These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27767043)

  • 1. Miocene orographic uplift forces rapid hydrological change in the southern central Andes.
    Rohrmann A; Sachse D; Mulch A; Pingel H; Tofelde S; Alonso RN; Strecker MR
    Sci Rep; 2016 Oct; 6():35678. PubMed ID: 27767043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes.
    Sundell KE; Saylor JE; Lapen TJ; Horton BK
    Sci Rep; 2019 Mar; 9(1):4877. PubMed ID: 30890755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods.
    Amidon WH; Fisher GB; Burbank DW; Ciccioli PL; Alonso RN; Gorin AL; Silverhart PH; Kylander-Clark ARC; Christoffersen MS
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6474-6479. PubMed ID: 28607045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early exhumation of the Frontal Cordillera (Southern Central Andes) and implications for Andean mountain-building at ~33.5°S.
    Riesner M; Simoes M; Carrizo D; Lacassin R
    Sci Rep; 2019 May; 9(1):7972. PubMed ID: 31138862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of convective rainfall during gradual late Miocene rise of the central Andes.
    Poulsen CJ; Ehlers TA; Insel N
    Science; 2010 Apr; 328(5977):490-3. PubMed ID: 20360069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miocene surface uplift and orogenic evolution of the southern Andean Plateau (central Puna), northwestern Argentina.
    Pingel H; Alonso RN; Bookhagen B; Cottle JM; Mulch A; Rohrmann A; Strecker MR
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2303964120. PubMed ID: 37812707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migrating deformation in the Central Andes from enhanced orographic rainfall.
    Norton K; Schlunegger F
    Nat Commun; 2011 Dec; 2():584. PubMed ID: 22158439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau.
    Martínez C; Jaramillo C; Correa-Metrío A; Crepet W; Moreno JE; Aliaga A; Moreno F; Ibañez-Mejia M; Bush MB
    Sci Adv; 2020 Aug; 6(35):eaaz4724. PubMed ID: 32923618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification in the Andes: age and origins of South American Heliotropium lineages (Heliotropiaceae, Boraginales).
    Luebert F; Hilger HH; Weigend M
    Mol Phylogenet Evol; 2011 Oct; 61(1):90-102. PubMed ID: 21689768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification in Adelomyia hummingbirds follows Andean uplift.
    Chaves JA; Weir JT; Smith TB
    Mol Ecol; 2011 Nov; 20(21):4564-76. PubMed ID: 21981387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating.
    Boos WR; Kuang Z
    Nature; 2010 Jan; 463(7278):218-22. PubMed ID: 20075917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling.
    Carrapa B; Clementz M; Feng R
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9747-9752. PubMed ID: 31036635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of geological data and comparative phylogeography of lowland tetrapods suggests recent dispersal through lowland portals crossing the Eastern Andean Cordillera.
    Rodriguez-Muñoz E; Montes C; Rojas-Runjaic FJM; Crawford AJ
    PeerJ; 2022; 10():e13186. PubMed ID: 35855906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocarbon bomb-peak signal in tree-rings from the tropical Andes register low latitude atmospheric dynamics in the Southern Hemisphere.
    Ancapichún S; De Pol-Holz R; Christie DA; Santos GM; Collado-Fabbri S; Garreaud R; Lambert F; Orfanoz-Cheuquelaf A; Rojas M; Southon J; Turnbull JC; Creasman PP
    Sci Total Environ; 2021 Jun; 774():145126. PubMed ID: 33611001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes.
    Graham A; Gregory-Wodzicki KM; Wright KL
    Am J Bot; 2001 Sep; 88(9):1545-57. PubMed ID: 21669687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incision into the eastern Andean Plateau during Pliocene cooling.
    Lease RO; Ehlers TA
    Science; 2013 Aug; 341(6147):774-6. PubMed ID: 23950534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.
    Reuter M; Kern AK; Harzhauser M; Kroh A; Piller WE
    Gondwana Res; 2013 Apr; 23(3):1172-1177. PubMed ID: 27087778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina).
    Tapia MJ; Farrell EE; Mautino LR; Del Papa C; Barreda VD; Palazzesi L
    PLoS One; 2023; 18(4):e0277389. PubMed ID: 37018180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China.
    Zhang C; Guo Z; Deng C; Ji X; Wu H; Paterson GA; Chang L; Li Q; Wu B; Zhu R
    Sci Rep; 2016 Feb; 6():20012. PubMed ID: 26829756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new species of Silvinichthys (Siluriformes, Trichomycteridae) lacking pelvic fins from mid-elevation localities of the southern Andes, with comments on the genus.
    Fernández L; Sanabria EA; Quiroga LB; Vari RP
    J Fish Biol; 2014 Feb; 84(2):372-82. PubMed ID: 24422902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.