BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27767077)

  • 1. Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.
    Yu G; Onodera H; Aono Y; Kawano F; Ueda Y; Furuya A; Suzuki H; Sato M
    Sci Rep; 2016 Oct; 6():35777. PubMed ID: 27767077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
    Noda N; Ozawa T
    Photochem Photobiol; 2018 Sep; 94(5):1071-1076. PubMed ID: 29893404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.
    Shen Y; Khanna R; Carle CM; Quail PH
    Plant Physiol; 2007 Nov; 145(3):1043-51. PubMed ID: 17827270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of molecular motors and organelle distributions in cells.
    Duan L; Che D; Zhang K; Ong Q; Guo S; Cui B
    Chem Biol; 2015 May; 22(5):671-82. PubMed ID: 25963241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling.
    Park E; Kim J; Lee Y; Shin J; Oh E; Chung WI; Liu JR; Choi G
    Plant Cell Physiol; 2004 Aug; 45(8):968-75. PubMed ID: 15356322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B.
    Qiu Y; Pasoreck EK; Reddy AK; Nagatani A; Ma W; Chory J; Chen M
    Nat Commun; 2017 Dec; 8(1):1905. PubMed ID: 29199270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of protein splicing with light in yeast.
    Tyszkiewicz AB; Muir TW
    Nat Methods; 2008 Apr; 5(4):303-5. PubMed ID: 18272963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana.
    Wang FF; Lian HL; Kang CY; Yang HQ
    Mol Plant; 2010 Jan; 3(1):246-59. PubMed ID: 19965572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Yue J; Qin Q; Meng S; Jing H; Gou X; Li J; Hou S
    Plant Physiol; 2016 Mar; 170(3):1381-97. PubMed ID: 26704640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.
    Khanna R; Huq E; Kikis EA; Al-Sady B; Lanzatella C; Quail PH
    Plant Cell; 2004 Nov; 16(11):3033-44. PubMed ID: 15486100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhiReX: a programmable and red light-regulated protein expression switch for yeast.
    Hochrein L; Machens F; Messerschmidt K; Mueller-Roeber B
    Nucleic Acids Res; 2017 Sep; 45(15):9193-9205. PubMed ID: 28911120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis.
    Oka Y; Kong SG; Matsushita T
    Plant Cell Physiol; 2011 Dec; 52(12):2088-102. PubMed ID: 22006939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid blue-light-mediated induction of protein interactions in living cells.
    Kennedy MJ; Hughes RM; Peteya LA; Schwartz JW; Ehlers MD; Tucker CL
    Nat Methods; 2010 Dec; 7(12):973-5. PubMed ID: 21037589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation.
    Tepperman JM; Hwang YS; Quail PH
    Plant J; 2006 Dec; 48(5):728-42. PubMed ID: 17076805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Control of Heterologous Metabolism in
    Raghavan AR; Salim K; Yadav VG
    ACS Synth Biol; 2020 Sep; 9(9):2291-2300. PubMed ID: 32786352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.