These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27767085)

  • 1. Wireless inertial measurement of head kinematics in freely-moving rats.
    Pasquet MO; Tihy M; Gourgeon A; Pompili MN; Godsil BP; Léna C; Dugué GP
    Sci Rep; 2016 Oct; 6():35689. PubMed ID: 27767085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility and Validity of Discriminating Yaw Plane Head-on-Trunk Motion Using Inertial Wearable Sensors.
    Paul SS; Walther RG; Beseris EA; Dibble LE; Lester ME
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2347-2354. PubMed ID: 28829312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial Measurement of Head Tilt in Rodents: Principles and Applications to Vestibular Research.
    Fayat R; Delgado Betancourt V; Goyallon T; Petremann M; Liaudet P; Descossy V; Reveret L; Dugué GP
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a point-of-care medical device to measure head impact in contact sports.
    Ambekar D; Al-Deneh Z; Dao T; Dziech AL; Subbian V; Beyette FR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4167-70. PubMed ID: 24110650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised quantification of whisking and head movement in freely moving rodents.
    Perkon I; Kosir A; Itskov PM; Tasic J; Diamond ME
    J Neurophysiol; 2011 Apr; 105(4):1950-62. PubMed ID: 21307326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals.
    Angotzi GN; Boi F; Zordan S; Bonfanti A; Vato A
    Sci Rep; 2014 Aug; 4():5963. PubMed ID: 25096831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a head-mounted wireless microstimulator for deep brain stimulation in rats.
    Fluri F; Mützel T; Schuhmann MK; Krstić M; Endres H; Volkmann J
    J Neurosci Methods; 2017 Nov; 291():249-256. PubMed ID: 28842194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals.
    Grand L; Ftomov S; Timofeev I
    J Neurosci Methods; 2013 Jan; 212(2):237-41. PubMed ID: 23099345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.
    Mjøsund HL; Boyle E; Kjaer P; Mieritz RM; Skallgård T; Kent P
    BMC Musculoskelet Disord; 2017 Mar; 18(1):124. PubMed ID: 28327115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neck electromyography is an effective measure of fear behavior.
    Steenland HW; Zhuo M
    J Neurosci Methods; 2009 Mar; 177(2):355-60. PubMed ID: 19010352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of wearable technology for performance assessment: a validation study.
    Papi E; Osei-Kuffour D; Chen YM; McGregor AH
    Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A passive, camera-based head-tracking system for real-time, three-dimensional estimation of head position and orientation in rodents.
    Vanzella W; Grion N; Bertolini D; Perissinotto A; Gigante M; Zoccolan D
    J Neurophysiol; 2019 Dec; 122(6):2220-2242. PubMed ID: 31553687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice.
    Meyer AF; Poort J; O'Keefe J; Sahani M; Linden JF
    Neuron; 2018 Oct; 100(1):46-60.e7. PubMed ID: 30308171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.