These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27767085)

  • 21. Bioinspired dynamic inclination measurement using inertial sensors.
    Vikas V; Crane C
    Bioinspir Biomim; 2015 Apr; 10(3):036003. PubMed ID: 25879912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in activity of the striatum during formation of a motor habit.
    Tang C; Pawlak AP; Prokopenko V; West MO
    Eur J Neurosci; 2007 Feb; 25(4):1212-27. PubMed ID: 17331217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking whisker and head movements in unrestrained behaving rodents.
    Knutsen PM; Derdikman D; Ahissar E
    J Neurophysiol; 2005 Apr; 93(4):2294-301. PubMed ID: 15563552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel low-noise movement tracking system with real-time analog output for closed-loop experiments.
    Gaspar N; Eichler R; Stark E
    J Neurosci Methods; 2019 Apr; 318():69-77. PubMed ID: 30650336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Head stabilization shows visual and inertial dependence during passive stimulation: implications for virtual rehabilitation.
    Wright WG; Agah MR; Darvish K; Keshner EA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):191-7. PubMed ID: 23314779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants.
    Jeong H; Kwak SS; Sohn S; Lee JY; Lee YJ; O'Brien MK; Park Y; Avila R; Kim JT; Yoo JY; Irie M; Jang H; Ouyang W; Shawen N; Kang YJ; Kim SS; Tzavelis A; Lee K; Andersen RA; Huang Y; Jayaraman A; Davis MM; Shanley T; Wakschlag LS; Krogh-Jespersen S; Xu S; Ryan SW; Lieber RL; Rogers JA
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring eating habits using a piezoelectric sensor-based necklace.
    Kalantarian H; Alshurafa N; Le T; Sarrafzadeh M
    Comput Biol Med; 2015 Mar; 58():46-55. PubMed ID: 25616023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A digital wireless system for closed-loop inhibition of nociceptive signals.
    Zuo C; Yang X; Wang Y; Hagains CE; Li AL; Peng YB; Chiao JC
    J Neural Eng; 2012 Oct; 9(5):056010. PubMed ID: 22955012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new platform based on IEEE802.15.4 wireless inertial sensors for motion caption and assessment.
    Brunetti F; Moreno JC; Ruiz AF; Rocon E; Pons JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6497-500. PubMed ID: 17959435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Injectable System for Subcutaneous Photoplethysmography, Accelerometry, and Thermometry in Animals.
    Reynolds J; Ahmmed P; Bozkurt A
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):825-834. PubMed ID: 31217129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a real-time three-dimensional spinal motion measurement system for clinical practice.
    Goodvin C; Park EJ; Huang K; Sakaki K
    Med Biol Eng Comput; 2006 Dec; 44(12):1061-75. PubMed ID: 17102955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A wireless multi-channel recording system for freely behaving mice and rats.
    Fan D; Rich D; Holtzman T; Ruther P; Dalley JW; Lopez A; Rossi MA; Barter JW; Salas-Meza D; Herwik S; Holzhammer T; Morizio J; Yin HH
    PLoS One; 2011; 6(7):e22033. PubMed ID: 21765934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wireless inertial measurement unit (IMU)-based posturography.
    Valldeperes A; Altuna X; Martinez-Basterra Z; Rossi-Izquierdo M; Benitez-Rosario J; Perez-Fernandez N; Rey-Martinez J
    Eur Arch Otorhinolaryngol; 2019 Nov; 276(11):3057-3065. PubMed ID: 31444561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses.
    Keegan KG; Kramer J; Yonezawa Y; Maki H; Pai PF; Dent EV; Kellerman TE; Wilson DA; Reed SK
    Am J Vet Res; 2011 Sep; 72(9):1156-63. PubMed ID: 21879972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DYSKIMOT: An Ultra-Low-Cost Inertial Sensor to Assess Head's Rotational Kinematics in Adults during the Didren-Laser Test.
    Hage R; Detrembleur C; Dierick F; Pitance L; Jojczyk L; Estievenart W; Buisseret F
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neck muscles in the rhesus monkey. II. Electromyographic patterns of activation underlying postures and movements.
    Corneil BD; Olivier E; Richmond FJ; Loeb GE; Munoz DP
    J Neurophysiol; 2001 Oct; 86(4):1729-49. PubMed ID: 11600635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation.
    McCracken MJ; Kramer J; Keegan KG; Lopes M; Wilson DA; Reed SK; LaCarrubba A; Rasch M
    Equine Vet J; 2012 Nov; 44(6):652-6. PubMed ID: 22563674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vestibular and cerebellar contribution to gaze optimality.
    Sağlam M; Glasauer S; Lehnen N
    Brain; 2014 Apr; 137(Pt 4):1080-94. PubMed ID: 24549962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A wireless neural recording system with a precision motorized microdrive for freely behaving animals.
    Hasegawa T; Fujimoto H; Tashiro K; Nonomura M; Tsuchiya A; Watanabe D
    Sci Rep; 2015 Jan; 5():7853. PubMed ID: 25597933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.