These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1028 related articles for article (PubMed ID: 27767354)
1. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354 [TBL] [Abstract][Full Text] [Related]
2. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5060-5. PubMed ID: 22729437 [TBL] [Abstract][Full Text] [Related]
3. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A Clin Exp Optom; 2015 Nov; 98(6):534-40. PubMed ID: 26283026 [TBL] [Abstract][Full Text] [Related]
4. Short- and Long-Term Changes in Corneal Aberrations and Axial Length Induced by Orthokeratology in Children Are Not Correlated. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A Eye Contact Lens; 2017 Nov; 43(6):358-363. PubMed ID: 27341092 [TBL] [Abstract][Full Text] [Related]
5. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2014 Mar; 40(2):84-90. PubMed ID: 24508773 [TBL] [Abstract][Full Text] [Related]
6. Factors related to axial length elongation and myopia progression in orthokeratology practice. Wang B; Naidu RK; Qu X PLoS One; 2017; 12(4):e0175913. PubMed ID: 28419129 [TBL] [Abstract][Full Text] [Related]
7. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study. Na M; Yoo A Jpn J Ophthalmol; 2018 May; 62(3):327-334. PubMed ID: 29524061 [TBL] [Abstract][Full Text] [Related]
8. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Kinoshita N; Konno Y; Hamada N; Kanda Y; Shimmura-Tomita M; Kakehashi A Jpn J Ophthalmol; 2018 Sep; 62(5):544-553. PubMed ID: 29974278 [TBL] [Abstract][Full Text] [Related]
9. Myopia control during orthokeratology lens wear in children using a novel study design. Swarbrick HA; Alharbi A; Watt K; Lum E; Kang P Ophthalmology; 2015 Mar; 122(3):620-30. PubMed ID: 25439432 [TBL] [Abstract][Full Text] [Related]
10. Orthokeratology vs. spectacles: adverse events and discontinuations. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Optom Vis Sci; 2012 Aug; 89(8):1133-9. PubMed ID: 22773180 [TBL] [Abstract][Full Text] [Related]
11. Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Hiraoka T; Sekine Y; Okamoto F; Mihashi T; Oshika T Ophthalmic Physiol Opt; 2018 May; 38(3):281-289. PubMed ID: 29691927 [TBL] [Abstract][Full Text] [Related]
12. Factors preventing myopia progression with orthokeratology correction. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Optom Vis Sci; 2013 Nov; 90(11):1225-36. PubMed ID: 24037063 [TBL] [Abstract][Full Text] [Related]
13. Corneal power change is predictive of myopia progression in orthokeratology. Zhong Y; Chen Z; Xue F; Zhou J; Niu L; Zhou X Optom Vis Sci; 2014 Apr; 91(4):404-11. PubMed ID: 24492758 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of Trial Fitting and Software Fitting for Orthokeratology Lens: One-Year Follow-Up Study. Lu D; Gu T; Lin W; Li N; Gong B; Wei R Eye Contact Lens; 2018 Sep; 44(5):339-343. PubMed ID: 30048341 [TBL] [Abstract][Full Text] [Related]
15. Posterior corneal shape changes in myopic overnight orthokeratology. Yoon JH; Swarbrick HA Optom Vis Sci; 2013 Mar; 90(3):196-204. PubMed ID: 23422943 [TBL] [Abstract][Full Text] [Related]
16. Myopia control with orthokeratology contact lenses in Spain: a comparison of vision-related quality-of-life measures between orthokeratology contact lenses and single-vision spectacles. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2013 Mar; 39(2):153-7. PubMed ID: 23392299 [TBL] [Abstract][Full Text] [Related]
17. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length. Li Z; Hu Y; Cui D; Long W; He M; Yang X Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939 [TBL] [Abstract][Full Text] [Related]
18. Short-Term and Long-Term Changes in Corneal Power Are Not Correlated With Axial Elongation of the Eye Induced by Orthokeratology in Children. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2018 Jul; 44(4):260-267. PubMed ID: 27763910 [TBL] [Abstract][Full Text] [Related]
19. Comparison of myopia progression between children wearing three types of orthokeratology lenses and children wearing single-vision spectacles. Nakamura Y; Hieda O; Yokota I; Teramukai S; Sotozono C; Kinoshita S Jpn J Ophthalmol; 2021 Sep; 65(5):632-643. PubMed ID: 34292425 [TBL] [Abstract][Full Text] [Related]
20. Impact of pupil diameter on axial growth in orthokeratology. Chen Z; Niu L; Xue F; Qu X; Zhou Z; Zhou X; Chu R Optom Vis Sci; 2012 Nov; 89(11):1636-40. PubMed ID: 23026791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]