These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 27768174)

  • 1. A Modeling Study of the Effects of Vocal Tract Movement Duration and Magnitude on the F2 Trajectory in CV Words.
    Neely KD; Bunton K; Story BH
    J Speech Lang Hear Res; 2016 Dec; 59(6):1327-1334. PubMed ID: 27768174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A duration-dependent account of coarticulation for hyper- and hypoarticulation.
    Lindblom B; Sussman HM; Agwuele A
    Phonetica; 2009; 66(3):188-95. PubMed ID: 19776667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for finding constrictions in high front vowels.
    Jackson MT; McGowan RS
    J Acoust Soc Am; 2010 Jan; 127(1):EL6-12. PubMed ID: 20058942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels.
    Ménard L; Davis BL; Boë LJ; Roy JP
    J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of physiological adjustments on the perceptual and acoustical characteristics of simulated laryngeal vocal tremor.
    Lester RA; Story BH
    J Acoust Soc Am; 2015 Aug; 138(2):953-63. PubMed ID: 26328711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer model to characterize the air volume displaced by the vibrating vocal cords.
    Flanagan JL; Ishizaka K
    J Acoust Soc Am; 1978 May; 63(5):1559-65. PubMed ID: 690335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the articulatory space using a hypercube codebook for acoustic-to-articulatory inversion.
    Ouni S; Laprie Y
    J Acoust Soc Am; 2005 Jul; 118(1):444-60. PubMed ID: 16119364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers.
    Darwin CJ; Brungart DS; Simpson BD
    J Acoust Soc Am; 2003 Nov; 114(5):2913-22. PubMed ID: 14650025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between kinematics, F2 slope and speech intelligibility in dysarthria due to cerebral palsy.
    Rong P; Loucks T; Kim H; Hasegawa-Johnson M
    Clin Linguist Phon; 2012 Sep; 26(9):806-22. PubMed ID: 22876770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipatory Posturing of the Vocal Tract Reveals Dissociation of Speech Movement Plans from Linguistic Units.
    Tilsen S; Spincemaille P; Xu B; Doerschuk P; Luh WM; Feldman E; Wang Y
    PLoS One; 2016; 11(1):e0146813. PubMed ID: 26760511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of vocal tract geometries from biomechanical simulations.
    Dabbaghchian S; Arnela M; Engwall O; Guasch O
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3159. PubMed ID: 30242981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interaction of Lexical Characteristics and Speech Production in Parkinson's Disease.
    Chiu YF; Forrest K
    J Speech Lang Hear Res; 2017 Jan; 60(1):13-23. PubMed ID: 28056148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal production mechanisms in a non-human primate: morphological data and a model.
    Riede T; Bronson E; Hatzikirou H; Zuberbühler K
    J Hum Evol; 2005 Jan; 48(1):85-96. PubMed ID: 15656937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An age-dependent vocal tract model for males and females based on anatomic measurements.
    Story BH; Vorperian HK; Bunton K; Durtschi RB
    J Acoust Soc Am; 2018 May; 143(5):3079. PubMed ID: 29857736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.