BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 27768235)

  • 1. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.
    Leduc RY; Singh P; McDermid HE
    Birth Defects Res; 2017 Jan; 109(2):140-152. PubMed ID: 27768235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifier locus for exencephaly in Cecr2 mutant mice is syntenic to the 10q25.3 region associated with neural tube defects in humans.
    Davidson CE; Li Q; Churchill GA; Osborne LR; McDermid HE
    Physiol Genomics; 2007 Oct; 31(2):244-51. PubMed ID: 17623803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-specific modifier genes of Cecr2-associated exencephaly in mice: genetic analysis and identification of differentially expressed candidate genes.
    Kooistra MK; Leduc RY; Dawe CE; Fairbridge NA; Rasmussen J; Man JH; Bujold M; Juriloff D; King-Jones K; McDermid HE
    Physiol Genomics; 2012 Jan; 44(1):35-46. PubMed ID: 22045912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G-protein-coupled receptor signaling and neural tube closure defects.
    Shimada IS; Mukhopadhyay S
    Birth Defects Res; 2017 Jan; 109(2):129-139. PubMed ID: 27731925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse as a model for multifactorial inheritance of neural tube defects.
    Zohn IE
    Birth Defects Res C Embryo Today; 2012 Jun; 96(2):193-205. PubMed ID: 22692891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
    De Castro SCP; Hirst CS; Savery D; Rolo A; Lickert H; Andersen B; Copp AJ; Greene NDE
    Dev Biol; 2018 Mar; 435(2):130-137. PubMed ID: 29397878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shared molecular networks in orofacial and neural tube development.
    Kousa YA; Mansour TA; Seada H; Matoo S; Schutte BC
    Birth Defects Res; 2017 Jan; 109(2):169-179. PubMed ID: 27933721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.
    Vijayraghavan DS; Davidson LA
    Birth Defects Res; 2017 Jan; 109(2):153-168. PubMed ID: 27620928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling neural tube defects in the mouse.
    Zohn IE; Sarkar AA
    Curr Top Dev Biol; 2008; 84():1-35. PubMed ID: 19186242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite profiling of whole murine embryos reveals metabolic perturbations associated with maternal valproate-induced neural tube closure defects.
    Akimova D; Wlodarczyk BJ; Lin Y; Ross ME; Finnell RH; Chen Q; Gross SS
    Birth Defects Res; 2017 Jan; 109(2):106-119. PubMed ID: 27860192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.
    Dady A; Havis E; Escriou V; Catala M; Duband JL
    J Neurosci; 2014 Sep; 34(39):13208-21. PubMed ID: 25253865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of genes involved in neural tube closure during human embryonic development using long serial analysis of gene expression (long-SAGE).
    Krupp DR; Xu PT; Thomas S; Dellinger A; Etchevers HC; Vekemans M; Gilbert JR; Speer MC; Ashley-Koch AE; Gregory SG;
    Birth Defects Res A Clin Mol Teratol; 2012 Sep; 94(9):683-92. PubMed ID: 22806986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation.
    Li BI; Matteson PG; Ababon MF; Nato AQ; Lin Y; Nanda V; Matise TC; Millonig JH
    Dev Biol; 2015 Jun; 402(1):17-31. PubMed ID: 25753732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects.
    Korstanje R; Desai J; Lazar G; King B; Rollins J; Spurr M; Joseph J; Kadambi S; Li Y; Cherry A; Matteson PG; Paigen B; Millonig JH
    Physiol Genomics; 2008 Nov; 35(3):296-304. PubMed ID: 18796533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic basis of neural tube defects. I. Regulatory genes for the neurulation process.
    Gos M; Szpecht-Potocka A
    J Appl Genet; 2002; 43(3):343-50. PubMed ID: 12177524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice.
    Neumann PE; Frankel WN; Letts VA; Coffin JM; Copp AJ; Bernfield M
    Nat Genet; 1994 Apr; 6(4):357-62. PubMed ID: 8054974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posterior axis formation requires Dlx5/Dlx6 expression at the neural plate border.
    Narboux-Neme N; Ekker M; Levi G; Heude E
    PLoS One; 2019; 14(3):e0214063. PubMed ID: 30889190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics and development of neural tube defects.
    Copp AJ; Greene ND
    J Pathol; 2010 Jan; 220(2):217-30. PubMed ID: 19918803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.
    Harris MJ; Juriloff DM
    Birth Defects Res A Clin Mol Teratol; 2010 Aug; 88(8):653-69. PubMed ID: 20740593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamin b1 polymorphism influences morphology of the nuclear envelope, cell cycle progression, and risk of neural tube defects in mice.
    De Castro SC; Malhas A; Leung KY; Gustavsson P; Vaux DJ; Copp AJ; Greene ND
    PLoS Genet; 2012; 8(11):e1003059. PubMed ID: 23166514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.