BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 27768289)

  • 1. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry.
    Zhou Z; Shen X; Tu J; Zhu ZJ
    Anal Chem; 2016 Nov; 88(22):11084-11091. PubMed ID: 27768289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics.
    Zhou Z; Tu J; Xiong X; Shen X; Zhu ZJ
    Anal Chem; 2017 Sep; 89(17):9559-9566. PubMed ID: 28764323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.
    Zhou Z; Tu J; Zhu ZJ
    Curr Opin Chem Biol; 2018 Feb; 42():34-41. PubMed ID: 29136580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics.
    Zhou Z; Xiong X; Zhu ZJ
    Bioinformatics; 2017 Jul; 33(14):2235-2237. PubMed ID: 28334295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine.
    Nye LC; Williams JP; Munjoma NC; Letertre MPM; Coen M; Bouwmeester R; Martens L; Swann JR; Nicholson JK; Plumb RS; McCullagh M; Gethings LA; Lai S; Langridge JI; Vissers JPC; Wilson ID
    J Chromatogr A; 2019 Sep; 1602():386-396. PubMed ID: 31285057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCS Predictor 2.0: An Open-Source Jupyter Notebook Tool for Filtering Out False Positives in Metabolomics.
    Rainey MA; Watson CA; Asef CK; Foster MR; Baker ES; Fernández FM
    Anal Chem; 2022 Dec; 94(50):17456-17466. PubMed ID: 36473057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry.
    Blaženović I; Shen T; Mehta SS; Kind T; Ji J; Piparo M; Cacciola F; Mondello L; Fiehn O
    Anal Chem; 2018 Sep; 90(18):10758-10764. PubMed ID: 30096227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of a Large-Scale Database of Collision Cross-Section and Retention Time Using Machine Learning to Reduce False Positive Annotations in Untargeted Metabolomics.
    Lenski M; Maallem S; Zarcone G; Garçon G; Lo-Guidice JM; Anthérieu S; Allorge D
    Metabolites; 2023 Feb; 13(2):. PubMed ID: 36837901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites.
    Ross DH; Seguin RP; Krinsky AM; Xu L
    J Am Soc Mass Spectrom; 2022 Jun; 33(6):1061-1072. PubMed ID: 35548857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry.
    Mollerup CB; Mardal M; Dalsgaard PW; Linnet K; Barron LP
    J Chromatogr A; 2018 Mar; 1542():82-88. PubMed ID: 29472071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Collision Cross-Section Values for Extractables and Leachables from Plastic Products.
    Song XC; Dreolin N; Canellas E; Goshawk J; Nerin C
    Environ Sci Technol; 2022 Jul; 56(13):9463-9473. PubMed ID: 35730527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications.
    Paglia G; Astarita G
    Methods Mol Biol; 2019; 1978():39-53. PubMed ID: 31119656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unknown Metabolite Identification Using Machine Learning Collision Cross-Section Prediction and Tandem Mass Spectrometry.
    Asef CK; Rainey MA; Garcia BM; Gouveia GJ; Shaver AO; Leach FE; Morse AM; Edison AS; McIntyre LM; Fernández FM
    Anal Chem; 2023 Jan; 95(2):1047-1056. PubMed ID: 36595469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilising ion mobility mass spectrometry for metabolomics.
    Sinclair E; Hollywood KA; Yan C; Blankley R; Breitling R; Barran P
    Analyst; 2018 Sep; 143(19):4783-4788. PubMed ID: 30209461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking Down Structural Diversity for Comprehensive Prediction of Ion-Neutral Collision Cross Sections.
    Ross DH; Cho JH; Xu L
    Anal Chem; 2020 Mar; 92(6):4548-4557. PubMed ID: 32096630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion mobility derived collision cross sections to support metabolomics applications.
    Paglia G; Williams JP; Menikarachchi L; Thompson JW; Tyldesley-Worster R; Halldórsson S; Rolfsson O; Moseley A; Grant D; Langridge J; Palsson BO; Astarita G
    Anal Chem; 2014 Apr; 86(8):3985-93. PubMed ID: 24640936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics.
    Zhou Z; Luo M; Chen X; Yin Y; Xiong X; Wang R; Zhu ZJ
    Nat Commun; 2020 Aug; 11(1):4334. PubMed ID: 32859911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry.
    George AC; Schmitz-Afonso I; Marie V; Colsch B; Fenaille F; Afonso C; Loutelier-Bourhis C
    Anal Chim Acta; 2022 Sep; 1226():340236. PubMed ID: 36068052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS.
    Plante PL; Francovic-Fontaine É; May JC; McLean JA; Baker ES; Laviolette F; Marchand M; Corbeil J
    Anal Chem; 2019 Apr; 91(8):5191-5199. PubMed ID: 30932474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Collision Cross Section Values: Application to Non-Intentionally Added Substance Identification in Food Contact Materials.
    Song XC; Dreolin N; Damiani T; Canellas E; Nerin C
    J Agric Food Chem; 2022 Feb; 70(4):1272-1281. PubMed ID: 35041428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.