These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27768292)
1. Tuning the Band Bending and Controlling the Surface Reactivity at Polar and Nonpolar Surfaces of ZnO through Phosphonic Acid Binding. McNeill AR; Hyndman AR; Reeves RJ; Downard AJ; Allen MW ACS Appl Mater Interfaces; 2016 Nov; 8(45):31392-31402. PubMed ID: 27768292 [TBL] [Abstract][Full Text] [Related]
2. Electroreduction of Aryldiazonium Ion at the Polar and Non-Polar Faces of ZnO: Characterisation of the Grafted Films and Their Influence on Near-Surface Band Bending. McNeill AR; Martinez-Gazoni R; Reeves RJ; Allen MW; Downard AJ Chemphyschem; 2021 Jul; 22(13):1344-1351. PubMed ID: 33942472 [TBL] [Abstract][Full Text] [Related]
3. Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces. Borghetti P; Mouchaal Y; Dai Z; Cabailh G; Chenot S; Lazzari R; Jupille J Phys Chem Chem Phys; 2017 Apr; 19(16):10350-10357. PubMed ID: 28379222 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure variations of polar and nonpolar ZnO lattices with nitrogen-ion bombardment using synchrotron-based in situ photoemission and X-ray absorption spectroscopy. Huang Y; Li Y; Wu M; Wang HQ; Yuan X; Gholam T; Zeng H; Wang JO; Wu R; Qian HJ; Zhang Y; Kang J J Synchrotron Radiat; 2020 Jan; 27(Pt 1):83-89. PubMed ID: 31868740 [TBL] [Abstract][Full Text] [Related]
5. The effect of covalently bonded aryl layers on the band bending and electron density of SnO Schuurman JC; McNeill AR; Martinez-Gazoni RF; Scott JI; Reeves RJ; Allen MW; Downard AJ Phys Chem Chem Phys; 2019 Aug; 21(32):17913-17922. PubMed ID: 31380874 [TBL] [Abstract][Full Text] [Related]
6. Specific defects, surface band bending and characteristic green emissions of ZnO. Tay YY; Tan TT; Liang MH; Boey F; Li S Phys Chem Chem Phys; 2010 Jun; 12(23):6008-13. PubMed ID: 20383351 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydroxylation and silanization on the surface properties of ZnO nanowires. García Núñez C; Sachsenhauser M; Blashcke B; García Marín A; Garrido JA; Pau JL ACS Appl Mater Interfaces; 2015 Mar; 7(9):5331-7. PubMed ID: 25675135 [TBL] [Abstract][Full Text] [Related]
9. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy. Jin L; Wang Y Phys Chem Chem Phys; 2017 May; 19(20):12992-13001. PubMed ID: 28480918 [TBL] [Abstract][Full Text] [Related]
10. Band-Bending of Ga-Polar GaN Interfaced with Al Kim K; Ryu JH; Kim J; Cho SJ; Liu D; Park J; Lee IK; Moody B; Zhou W; Albrecht J; Ma Z ACS Appl Mater Interfaces; 2017 May; 9(20):17576-17585. PubMed ID: 28447450 [TBL] [Abstract][Full Text] [Related]
11. Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction. Jones PM; May JA; Reitz JB; Solomon EI Inorg Chem; 2004 May; 43(11):3349-70. PubMed ID: 15154797 [TBL] [Abstract][Full Text] [Related]
12. Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods. Al-Saadi MJ; Al-Harthi SH; Kyaw HH; Myint MTZ; Bora T; Laxman K; Al-Hinai A; Dutta J Nanoscale Res Lett; 2017 Dec; 12(1):22. PubMed ID: 28063141 [TBL] [Abstract][Full Text] [Related]
13. Effect of hydrogen in controlling the structural orientation of ZnO:Ga:H as transparent conducting oxide films suitable for applications in stacked layer devices. Mondal P; Das D Phys Chem Chem Phys; 2016 Jul; 18(30):20450-8. PubMed ID: 27401012 [TBL] [Abstract][Full Text] [Related]
14. Energy-Level Engineering at ZnO/Oligophenylene Interfaces with Phosphonate-Based Self-Assembled Monolayers. Timpel M; Nardi MV; Ligorio G; Wegner B; Pätzel M; Kobin B; Hecht S; Koch N ACS Appl Mater Interfaces; 2015 Jun; 7(22):11900-7. PubMed ID: 25986080 [TBL] [Abstract][Full Text] [Related]
15. Toward controlling the Al Janowitz C; Mahmoodinezhad A; Kot M; Morales C; Naumann F; Plate P; Zoellner MH; Bärwolf F; Stolarek D; Wenger C; Henkel K; Flege JI Dalton Trans; 2022 Jun; 51(24):9291-9301. PubMed ID: 35670312 [TBL] [Abstract][Full Text] [Related]
17. Microscopic origin of electron accumulation in In2O3. Zhang KH; Egdell RG; Offi F; Iacobucci S; Petaccia L; Gorovikov S; King PD Phys Rev Lett; 2013 Feb; 110(5):056803. PubMed ID: 23414041 [TBL] [Abstract][Full Text] [Related]
18. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Ansari SA; Khan MM; Kalathil S; Nisar A; Lee J; Cho MH Nanoscale; 2013 Oct; 5(19):9238-46. PubMed ID: 23938937 [TBL] [Abstract][Full Text] [Related]
19. Precise determination of surface band bending in Ga-polar n-GaN films by angular dependent X-Ray photoemission spectroscopy. Zhao Y; Gao H; Huang R; Huang Z; Li F; Feng J; Sun Q; Dingsun A; Yang H Sci Rep; 2019 Nov; 9(1):16969. PubMed ID: 31740691 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional band structure and surface electron accumulation of rs-Cd Takahashi K; Imamura M; Chang JH; Tanaka T; Saito K; Guo Q; Yu KM; Walukiewicz W Sci Rep; 2019 May; 9(1):8026. PubMed ID: 31142755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]