These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27768367)

  • 1. Preferential Rotation of Chiral Dipoles in Isotropic Turbulence.
    Kramel S; Voth GA; Tympel S; Toschi F
    Phys Rev Lett; 2016 Oct; 117(15):154501. PubMed ID: 27768367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation rate of rods in turbulent fluid flow.
    Parsa S; Calzavarini E; Toschi F; Voth GA
    Phys Rev Lett; 2012 Sep; 109(13):134501. PubMed ID: 23030093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elliptical tracers in two-dimensional, homogeneous, isotropic fluid turbulence: the statistics of alignment, rotation, and nematic order.
    Gupta A; Vincenzi D; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021001. PubMed ID: 25353409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tangling clustering of inertial particles in stably stratified turbulence.
    Eidelman A; Elperin T; Kleeorin N; Melnik B; Rogachevskii I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056313. PubMed ID: 20866328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame.
    Benzi R; Biferale L; Calzavarini E; Lohse D; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066318. PubMed ID: 20365278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Peterlin approximation on polymer dynamics in turbulent flows.
    Vincenzi D; Perlekar P; Biferale L; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053004. PubMed ID: 26651776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows.
    Shen J; Lu Z; Wang LP; Peng C
    Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy inertial particles in rotating turbulence: Distribution of particles in flow and evolution of Lagrangian trajectories.
    Maity P
    Phys Rev E; 2023 Jun; 107(6-2):065107. PubMed ID: 37464649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.
    De Pietro M; van Hinsberg MA; Biferale L; Clercx HJ; Perlekar P; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053002. PubMed ID: 26066244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lagrangian studies in convective turbulence.
    Schumacher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056301. PubMed ID: 19518556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence.
    Hartlep T; Cuzzi JN; Weston B
    Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial spheroids in homogeneous, isotropic turbulence.
    Roy A; Gupta A; Ray SS
    Phys Rev E; 2018 Aug; 98(2-1):021101. PubMed ID: 30253548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotation of Nonspherical Particles in Turbulent Channel Flow.
    Zhao L; Challabotla NR; Andersson HI; Variano EA
    Phys Rev Lett; 2015 Dec; 115(24):244501. PubMed ID: 26705637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.
    Ayyalasomayajula S; Gylfason A; Collins LR; Bodenschatz E; Warhaft Z
    Phys Rev Lett; 2006 Oct; 97(14):144507. PubMed ID: 17155261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories.
    Reynolds AM
    J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capturing Velocity Gradients and Particle Rotation Rates in Turbulence.
    Leppin LA; Wilczek M
    Phys Rev Lett; 2020 Nov; 125(22):224501. PubMed ID: 33315445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.
    Danish M; Sinha SS; Srinivasan B
    Phys Rev E; 2016 Jul; 94(1-1):013101. PubMed ID: 27575211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.
    Cole BC; Marcus GG; Parsa S; Kramel S; Ni R; Voth GA
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27404898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.