These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27768687)

  • 61. Interrelations between the efficiency of translation start sites and other sequence features of yeast mRNAs.
    Kochetov AV; Kolchanov NA; Sarai A
    Mol Genet Genomics; 2003 Dec; 270(5):442-7. PubMed ID: 14608502
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PromoSer: A large-scale mammalian promoter and transcription start site identification service.
    Halees AS; Leyfer D; Weng Z
    Nucleic Acids Res; 2003 Jul; 31(13):3554-9. PubMed ID: 12824364
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes.
    Ingolia NT; Lareau LF; Weissman JS
    Cell; 2011 Nov; 147(4):789-802. PubMed ID: 22056041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.
    Ivanov IP; Firth AE; Michel AM; Atkins JF; Baranov PV
    Nucleic Acids Res; 2011 May; 39(10):4220-34. PubMed ID: 21266472
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The structure of the 5'-untranslated region of mammalian poly(A) polymerase-alpha mRNA suggests a mechanism of translational regulation.
    Rapti A; Trangas T; Samiotaki M; Ioannidis P; Dimitriadis E; Meristoudis C; Veletza S; Courtis N
    Mol Cell Biochem; 2010 Jul; 340(1-2):91-6. PubMed ID: 20174964
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sequence analysis of the 5'-flanking region of the gene encoding human HOXA-7.
    Kim MH; Cho M; Park D
    Somat Cell Mol Genet; 1998 Nov; 24(6):371-4. PubMed ID: 10763416
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteogenomic Approach to UTR Peptide Identification.
    Choi S; Ju S; Lee J; Na S; Lee C; Paek E
    J Proteome Res; 2020 Jan; 19(1):212-220. PubMed ID: 31714086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three mRNA species for mammalian-type gonadotropin-releasing hormone in the brain of the eel Anguilla japonica.
    Okubo K; Suetake H; Aida K
    Mol Cell Endocrinol; 2002 Jun; 192(1-2):17-25. PubMed ID: 12088863
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thrombopoietin production is inhibited by a translational mechanism.
    Ghilardi N; Wiestner A; Skoda RC
    Blood; 1998 Dec; 92(11):4023-30. PubMed ID: 9834204
    [TBL] [Abstract][Full Text] [Related]  

  • 70. HAltORF: a database of predicted out-of-frame alternative open reading frames in human.
    Vanderperre B; Lucier JF; Roucou X
    Database (Oxford); 2012; 2012():bas025. PubMed ID: 22613085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites.
    Re A; Waldron L; Quattrone A
    PLoS Comput Biol; 2016 Dec; 12(12):e1005198. PubMed ID: 27923063
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Potential secondary structure at translation-initiation sites.
    Ganoza MC; Kofoid EC; Marlière P; Louis BG
    Nucleic Acids Res; 1987 Jan; 15(1):345-60. PubMed ID: 3484332
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bayesian prediction of RNA translation from ribosome profiling.
    Malone B; Atanassov I; Aeschimann F; Li X; Großhans H; Dieterich C
    Nucleic Acids Res; 2017 Apr; 45(6):2960-2972. PubMed ID: 28126919
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes.
    Makita Y; de Hoon MJ; Danchin A
    BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparative analysis of protein-coding and long non-coding transcripts based on RNA sequence features.
    Volkova OA; Kondrakhin YV; Kashapov TA; Sharipov RN
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840013. PubMed ID: 29739305
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved
    Wu TY; Li YR; Chang KJ; Fang JC; Urano D; Liu MJ
    Genome Res; 2024 Mar; 34(2):272-285. PubMed ID: 38479836
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis.
    Cortes T; Schubert OT; Rose G; Arnvig KB; Comas I; Aebersold R; Young DB
    Cell Rep; 2013 Nov; 5(4):1121-31. PubMed ID: 24268774
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mammalian Alternative Translation Initiation Is Mostly Nonadaptive.
    Xu C; Zhang J
    Mol Biol Evol; 2020 Jul; 37(7):2015-2028. PubMed ID: 32145028
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape.
    Shell SS; Wang J; Lapierre P; Mir M; Chase MR; Pyle MM; Gawande R; Ahmad R; Sarracino DA; Ioerger TR; Fortune SM; Derbyshire KM; Wade JT; Gray TA
    PLoS Genet; 2015 Nov; 11(11):e1005641. PubMed ID: 26536359
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast.
    Dvir S; Velten L; Sharon E; Zeevi D; Carey LB; Weinberger A; Segal E
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):E2792-801. PubMed ID: 23832786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.