These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27768948)

  • 1. Biocatalysts for methane conversion: big progress on breaking a small substrate.
    Lawton TJ; Rosenzweig AC
    Curr Opin Chem Biol; 2016 Dec; 35():142-149. PubMed ID: 27768948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic oxidation of methane.
    Sirajuddin S; Rosenzweig AC
    Biochemistry; 2015 Apr; 54(14):2283-94. PubMed ID: 25806595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research progresses of methanotrophs and methane monooxygenases].
    Han B; Su T; Li X; Xing X
    Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of substrate access to the active site in methane monooxygenase.
    Lee SJ; McCormick MS; Lippard SJ; Cho US
    Nature; 2013 Feb; 494(7437):380-4. PubMed ID: 23395959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxylation mechanism of methane and its derivatives over designed methane monooxygenase model with peroxo dizinc core.
    Li CQ; Yang HQ; Xu J; Hu CW
    Org Biomol Chem; 2012 May; 10(19):3924-31. PubMed ID: 22495218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in biomolecular machine: methane monooxygenases].
    Lu J; Wang S; Fang B
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1015-23. PubMed ID: 26647577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis and expression of methane monooxygenase to alter regioselectivity with aromatic substrates.
    Lock M; Nichol T; Murrell JC; Smith TJ
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea.
    Shao N; Fan Y; Chou CW; Yavari S; Williams RV; Amster IJ; Brown SM; Drake IJ; Duin EC; Whitman WB; Liu Y
    Commun Biol; 2022 Oct; 5(1):1113. PubMed ID: 36266535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane monooxygenase: functionalizing methane at iron and copper.
    Sazinsky MH; Lippard SJ
    Met Ions Life Sci; 2015; 15():205-56. PubMed ID: 25707469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tale of two methane monooxygenases.
    Ross MO; Rosenzweig AC
    J Biol Inorg Chem; 2017 Apr; 22(2-3):307-319. PubMed ID: 27878395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of methane by a biological dicopper centre.
    Balasubramanian R; Smith SM; Rawat S; Yatsunyk LA; Stemmler TL; Rosenzweig AC
    Nature; 2010 May; 465(7294):115-9. PubMed ID: 20410881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.
    Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U
    Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.
    Wang VC; Maji S; Chen PP; Lee HK; Yu SS; Chan SI
    Chem Rev; 2017 Jul; 117(13):8574-8621. PubMed ID: 28206744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.
    Wongnate T; Ragsdale SW
    J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.
    El Ghazouani A; Baslé A; Gray J; Graham DW; Firbank SJ; Dennison C
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8400-4. PubMed ID: 22582172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the key species in the enzymatic oxidation of methane to methanol.
    Banerjee R; Proshlyakov Y; Lipscomb JD; Proshlyakov DA
    Nature; 2015 Feb; 518(7539):431-4. PubMed ID: 25607364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.
    Romano D; Contente ML; Molinari F; Eberini I; Ruvutuso E; Sensi C; Amaretti A; Rossi M; Raimondi S
    Microb Cell Fact; 2014 Apr; 13():60. PubMed ID: 24767246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.