These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 27769441)

  • 1. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric sensor for cimetidine detection in human urine based on d-xylose protected gold nanoparticles.
    Hu F; Wu P; Wang R; Liu W; He H
    Analyst; 2018 May; 143(10):2369-2376. PubMed ID: 29696278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric sensing of selenocystine using gold nanoparticles.
    Liu L; Wang X; Yang J; Bai Y
    Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine.
    Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z
    Analyst; 2011 Sep; 136(18):3725-30. PubMed ID: 21804959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles.
    Wei X; Qi L; Tan J; Liu R; Wang F
    Anal Chim Acta; 2010 Jun; 671(1-2):80-4. PubMed ID: 20541646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles.
    Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD
    Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.
    Kang J; Zhang Y; Li X; Miao L; Wu A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols.
    Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X
    Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N; Seth R; Kumar H
    Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation.
    Song Y; Feng D; Shao S; Liang J
    Talanta; 2018 Sep; 187():308-313. PubMed ID: 29853052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles.
    Liu C; Miao Y; Zhang X; Zhang S; Zhao X
    Mikrochim Acta; 2020 May; 187(6):362. PubMed ID: 32476039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine.
    Liu L; Zhu G; Zeng W; Yi Y; Lv B; Qian J; Zhang D
    Mikrochim Acta; 2019 Jan; 186(2):98. PubMed ID: 30631943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y; Wu P; Xu H; Zhang H; Zhong X
    Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles.
    Chen Z; Luo S; Liu C; Cai Q
    Anal Bioanal Chem; 2009 Sep; 395(2):489-94. PubMed ID: 19641904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples.
    Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH
    Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonding recognition and colorimetric detection of isoprenaline using 2-amino-5-mercapto-1,3,4-thiadiazol functionalized gold nanoparticles.
    Khezri S; Bahram M; Samadi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():522-527. PubMed ID: 28863401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles.
    Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y
    Talanta; 2024 May; 271():125758. PubMed ID: 38340415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum.
    Leng Y; Xie K; Ye L; Li G; Lu Z; He J
    Talanta; 2015 Jul; 139():89-95. PubMed ID: 25882412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.