BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2776970)

  • 1. Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process.
    Astrow SH; Holton B; Weisblat DA
    Dev Biol; 1989 Oct; 135(2):306-19. PubMed ID: 2776970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal and vegetal teloplasms mix in the early embryo of the leech, Helobdella triserialis.
    Holton B; Astrow SH; Weisblat DA
    Dev Biol; 1989 Jan; 131(1):182-8. PubMed ID: 2909403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of polyadenylated RNAs during teloplasm formation and cleavage in leech embryos.
    Holton B; Wedeen CJ; Astrow SH; Weisblat DA
    Rouxs Arch Dev Biol; 1994 Oct; 204(1):46-53. PubMed ID: 28305805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic and cortical determinants interact to specify ectoderm and mesoderm in the leech embryo.
    Nelson BH; Weisblat DA
    Development; 1992 May; 115(1):103-15. PubMed ID: 1638974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments.
    Boyle JA; Ernst SG
    Dev Biol; 1989 Jul; 134(1):72-84. PubMed ID: 2471666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugation redistributes factors determining cleavage patterns in leech embryos.
    Astrow S; Holton B; Weisblat D
    Dev Biol; 1987 Mar; 120(1):270-83. PubMed ID: 3817294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis.
    Sawada T; Schatten G
    Dev Biol; 1989 Apr; 132(2):331-42. PubMed ID: 2466714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of 3'UTR sequence elements and a teloplasm localization motif sufficient for the localization of Hro-twist mRNA to the zygotic animal and vegetal poles.
    Farooq M; Choi J; Seoane AI; Lleras RA; Tran HV; Mandal SA; Nelson CL; Soto JG
    Dev Growth Differ; 2012 May; 54(4):519-34. PubMed ID: 22587329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors.
    Madreperla SA; Adler R
    Dev Biol; 1989 Jan; 131(1):149-60. PubMed ID: 2642427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements.
    Johnson MH; Maro B
    J Embryol Exp Morphol; 1985 Dec; 90():311-34. PubMed ID: 2871124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments.
    Fernández J; Cantillana V; Ubilla A
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):214-30. PubMed ID: 12211103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early events leading to fate decisions during leech embryogenesis.
    Pilon M; Weisblat DA
    Semin Cell Dev Biol; 1997 Aug; 8(4):351-8. PubMed ID: 15001073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division.
    Roegiers F; Djediat C; Dumollard R; Rouvière C; Sardet C
    Development; 1999 Jun; 126(14):3101-17. PubMed ID: 10375502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of actin networks during early development of Tubifex embryos.
    Shimizu T
    Dev Biol; 1988 Feb; 125(2):321-31. PubMed ID: 3338618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of ectoderm to mesoderm by cytoplasmic extrusion in leech embryos.
    Nelson BH; Weisblat DA
    Science; 1991 Jul; 253(5018):435-8. PubMed ID: 17746400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and localization of cytoplasmic domains in leech and ascidian zygotes.
    Fernández J; Roegiers F; Cantillana V; Sardet C
    Int J Dev Biol; 1998 Nov; 42(8):1075-84. PubMed ID: 9879704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors specifying cell lineages in the leech.
    Weisblat DA; Astrow SH
    Ciba Found Symp; 1989; 144():113-24; discussion 124-30, 150-5. PubMed ID: 2776518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly.
    Solnica-Krezel L; Driever W
    Development; 1994 Sep; 120(9):2443-55. PubMed ID: 7956824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal and video imaging of cytoskeleton dynamics in the leech zygote.
    Fernández J; Toro J; Ubilla A
    Dev Biol; 2004 Jul; 271(1):59-74. PubMed ID: 15196950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.