BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 27769814)

  • 1. Bile acid synthesis precursors in subjects with genetic hypercholesterolemia negative for LDLR/APOB/PCSK9/APOE mutations. Association with lipids and carotid atherosclerosis.
    Baila-Rueda L; Cenarro A; Lamiquiz-Moneo I; Mateo-Gallego R; Bea AM; Perez-Calahorra S; Marco-Benedi V; Civeira F
    J Steroid Biochem Mol Biol; 2017 May; 169():226-233. PubMed ID: 27769814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile acid synthesis precursors in familial combined hyperlipidemia: the oxysterols 24S-hydroxycholesterol and 27-hydroxycholesterol.
    Baila-Rueda L; Mateo-Gallego R; Jarauta E; de Castro-Orós I; Bea AM; Cenarro A; Civeira F
    Biochem Biophys Res Commun; 2014 Apr; 446(3):731-5. PubMed ID: 24406166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid phenotype and heritage pattern in families with genetic hypercholesterolemia not related to LDLR, APOB, PCSK9, or APOE.
    Jarauta E; Pérez-Ruiz MR; Pérez-Calahorra S; Mateo-Gallego R; Cenarro A; Cofán M; Ros E; Civeira F; Tejedor MT
    J Clin Lipidol; 2016; 10(6):1397-1405.e2. PubMed ID: 27919357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol oversynthesis markers define familial combined hyperlipidemia versus other genetic hypercholesterolemias independently of body weight.
    Baila-Rueda L; Cenarro A; Lamiquiz-Moneo I; Perez-Calahorra S; Bea AM; Marco-Benedí V; Jarauta E; Mateo-Gallego R; Civeira F
    J Nutr Biochem; 2018 Mar; 53():48-57. PubMed ID: 29190549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cosegregation of serum cholesterol with cholesterol intestinal absorption markers in families with primary hypercholesterolemia without mutations in LDLR, APOB, PCSK9 and APOE genes.
    Baila-Rueda L; Pérez-Ruiz MR; Jarauta E; Tejedor MT; Mateo-Gallego R; Lamiquiz-Moneo I; de Castro-Orós I; Cenarro A; Civeira F
    Atherosclerosis; 2016 Mar; 246():202-7. PubMed ID: 26802983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid profile and genetic status in a familial hypercholesterolemia pediatric population: exploring the LDL/HDL ratio.
    Di Taranto MD; de Falco R; Guardamagna O; Massini G; Giacobbe C; Auricchio R; Malamisura B; Proto M; Palma D; Greco L; Fortunato G
    Clin Chem Lab Med; 2019 Jun; 57(7):1102-1110. PubMed ID: 30710474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations.
    Tichý L; Freiberger T; Zapletalová P; Soška V; Ravčuková B; Fajkusová L
    Atherosclerosis; 2012 Aug; 223(2):401-8. PubMed ID: 22698793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of carotid atherosclerosis in normocholesterolemic individuals with proven mutations in the low-density lipoprotein receptor or apolipoprotein B genes.
    Huijgen R; Vissers MN; Kindt I; Trip MD; de Groot E; Kastelein JJ; Hutten BA
    Circ Cardiovasc Genet; 2011 Aug; 4(4):413-7. PubMed ID: 21642693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lipoprotein(a) is associated to atherosclerosis in primary hypercholesterolemia].
    Bea AM; Mateo-Gallego R; Jarauta E; Villa-Pobo R; Calmarza P; Lamiquiz-Moneo I; Cenarro A; Civeira F
    Clin Investig Arterioscler; 2014; 26(4):176-83. PubMed ID: 24576773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased intestinal cholesterol absorption in autosomal dominant hypercholesterolemia and no mutations in the low-density lipoprotein receptor or apolipoprotein B genes.
    García-Otín AL; Cofán M; Junyent M; Recalde D; Cenarro A; Pocoví M; Ros E; Civeira F
    J Clin Endocrinol Metab; 2007 Sep; 92(9):3667-73. PubMed ID: 17566095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Children with hypercholesterolemia of unknown cause: Value of genetic risk scores.
    Sjouke B; Tanck MWT; Fouchier SW; Defesche JC; Hutten BA; Wiegman A; Kastelein JJP; Hovingh GK
    J Clin Lipidol; 2016; 10(4):851-859. PubMed ID: 27578116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients.
    Slimani A; Jelassi A; Jguirim I; Najah M; Rebhi L; Omezzine A; Maatouk F; Hamda KB; Kacem M; Rabès JP; Abifadel M; Boileau C; Rouis M; Slimane MN; Varret M
    Atherosclerosis; 2012 May; 222(1):158-66. PubMed ID: 22417841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland.
    Sharifi M; Walus-Miarka M; Idzior-Waluś B; Malecki MT; Sanak M; Whittall R; Li KW; Futema M; Humphries SE
    Metabolism; 2016 Mar; 65(3):48-53. PubMed ID: 26892515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 24S-hydroxycholesterol: a marker of brain cholesterol metabolism.
    Lütjohann D; von Bergmann K
    Pharmacopsychiatry; 2003 Sep; 36 Suppl 2():S102-6. PubMed ID: 14574622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of LDL receptor gene mutations and the R3500Q mutation of the apoB gene on lipoprotein phenotype of familial hypercholesterolemic patients from a South European population.
    Real JT; Chaves FJ; Ejarque I; García-García AB; Valldecabres C; Ascaso JF; Armengod ME; Carmena R
    Eur J Hum Genet; 2003 Dec; 11(12):959-65. PubMed ID: 14508510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Genetic Variants Associated with Familial Hypercholesterolemia on Low-Density Lipoprotein-Cholesterol Levels and Cardiovascular Outcomes in the Million Veteran Program.
    Sun YV; Damrauer SM; Hui Q; Assimes TL; Ho YL; Natarajan P; Klarin D; Huang J; Lynch J; DuVall SL; Pyarajan S; Honerlaw JP; Gaziano JM; Cho K; Rader DJ; O'Donnell CJ; Tsao PS; Wilson PWF
    Circ Genom Precis Med; 2018 Dec; 11(12):. PubMed ID: 31106297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia.
    Allard D; Amsellem S; Abifadel M; Trillard M; Devillers M; Luc G; Krempf M; Reznik Y; Girardet JP; Fredenrich A; Junien C; Varret M; Boileau C; Benlian P; Rabès JP
    Hum Mutat; 2005 Nov; 26(5):497. PubMed ID: 16211558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of plasma 7alpha-hydroxy-4-cholesten-3-one and 27-hydroxycholesterol concentrations as markers for hepatic bile acid synthesis in cholesterol-fed rabbits.
    Honda A; Yoshida T; Xu G; Matsuzaki Y; Fukushima S; Tanaka N; Doy M; Shefer S; Salen G
    Metabolism; 2004 Jan; 53(1):42-8. PubMed ID: 14681840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LDLR and ApoB are major genetic causes of autosomal dominant hypercholesterolemia in a Taiwanese population.
    Yang KC; Su YN; Shew JY; Yang KY; Tseng WK; Wu CC; Lee YT
    J Formos Med Assoc; 2007 Oct; 106(10):799-807. PubMed ID: 17964958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting familial hypercholesterolemia by serum lipid profile screening in a hospital setting: Clinical, genetic and atherosclerotic burden profile.
    Scicali R; Di Pino A; Platania R; Purrazzo G; Ferrara V; Giannone A; Urbano F; Filippello A; Rapisarda V; Farruggia E; Piro S; Rabuazzo AM; Purrello F
    Nutr Metab Cardiovasc Dis; 2018 Jan; 28(1):35-43. PubMed ID: 28958694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.