These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27769923)

  • 21. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.
    Nagel R; Kirschbaum F; Tiedemann R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Mar; 203(3):183-195. PubMed ID: 28233058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.
    Pouso P; Quintana L; López GC; Somoza GM; Silva AC; Trudeau VL
    Gen Comp Endocrinol; 2015 Oct; 222():158-66. PubMed ID: 26141148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative and evolutionary genomics of globin genes in fish.
    Negrisolo E; Bargelloni L; Patarnello T; Ozouf-Costaz C; Pisano E; di Prisco G; Verde C
    Methods Enzymol; 2008; 436():511-38. PubMed ID: 18237652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data.
    Alves-Gomes JA; Ortí G; Haygood M; Heiligenberg W; Meyer A
    Mol Biol Evol; 1995 Mar; 12(2):298-318. PubMed ID: 7700155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroethological approaches to the evolution of neural systems.
    Volman SF
    Brain Behav Evol; 1990; 36(2-3):154-65. PubMed ID: 2271918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species.
    Sarropoulou E; Fernandes JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Mar; 6(1):92-102. PubMed ID: 20961822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes.
    Canitz J; Kirschbaum F; Tiedemann R
    J Physiol Paris; 2016 Oct; 110(3 Pt B):273-280. PubMed ID: 28108417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modelling of the electric sense of fish: the role of multi-frequency measurements and movement.
    Ammari H; Boulier T; Garnier J; Wang H
    Bioinspir Biomim; 2017 Jan; 12(2):025002. PubMed ID: 28141576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.
    Tian R; Losilla M; Lu Y; Yang G; Zakon H
    BMC Evol Biol; 2017 Feb; 17(1):51. PubMed ID: 28193153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative neurophysiology: an electric convergence in fish.
    Katz PS
    Curr Biol; 2006 May; 16(9):R327-30. PubMed ID: 16682341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampal-like circuitry in the pallium of an electric fish: Possible substrates for recursive pattern separation and completion.
    Elliott SB; Harvey-Girard E; Giassi AC; Maler L
    J Comp Neurol; 2017 Jan; 525(1):8-46. PubMed ID: 27292574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introduction to the special issue on neuroethology.
    Simmons AM; Moss CF
    Behav Neurosci; 2019 Jun; 133(3):265-266. PubMed ID: 31144842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus.
    Rhee JS; Lee JS
    Mar Pollut Bull; 2014 Aug; 85(2):532-41. PubMed ID: 24759509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, Mormyrus rume, through a biomimetic Robotic Dummy Fish.
    Donati E; Worm M; Mintchev S; van der Wiel M; Benelli G; von der Emde G; Stefanini C
    Bioinspir Biomim; 2016 Dec; 11(6):066009. PubMed ID: 27906686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approach.
    Feulner PG; Kirschbaum F; Mamonekene V; Ketmaier V; Tiedemann R
    J Evol Biol; 2007 Jan; 20(1):403-14. PubMed ID: 17210033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae).
    Lamanna F; Kirschbaum F; Waurick I; Dieterich C; Tiedemann R
    BMC Genomics; 2015 Sep; 16(1):668. PubMed ID: 26335922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric organs: history and potential.
    Fritzsch B
    Science; 2014 Aug; 345(6197):631-2. PubMed ID: 25104375
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.