These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27769942)

  • 21. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour.
    Ahadian S; Banan Sadeghian R; Yaginuma S; Ramón-Azcón J; Nashimoto Y; Liang X; Bae H; Nakajima K; Shiku H; Matsue T; Nakayama KS; Khademhosseini A
    Biomater Sci; 2015 Nov; 3(11):1449-58. PubMed ID: 26343776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyaluronic acid/gelatin microcapsule functionalized with carbon nanotube through laccase-catalyzed crosslinking for fabrication of cardiac microtissue.
    Sharifisistani M; Khanmohammadi M; Badali E; Ghasemi P; Hassanzadeh S; Bahiraie N; Lotfibakhshaiesh N; Ai J
    J Biomed Mater Res A; 2022 Dec; 110(12):1866-1880. PubMed ID: 35765200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. beta1 integrin and organized actin filaments facilitate cardiomyocyte-specific RhoA-dependent activation of the skeletal alpha-actin promoter.
    Wei L; Wang L; Carson JA; Agan JE; Imanaka-Yoshida K; Schwartz RJ
    FASEB J; 2001 Mar; 15(3):785-96. PubMed ID: 11259397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Focal adhesion signaling affects regeneration by human nucleus pulposus cells in collagen- but not carbohydrate-based hydrogels.
    Krouwels A; Melchels FPW; van Rijen MHP; Ten Brink CBM; Dhert WJA; Cumhur Öner F; Tryfonidou MA; Creemers LB
    Acta Biomater; 2018 Jan; 66():238-247. PubMed ID: 29174589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AuNP-Collagen Matrix with Localized Stiffness for Cardiac-Tissue Engineering: Enhancing the Assembly of Intercalated Discs by β1-Integrin-Mediated Signaling.
    Li Y; Shi X; Tian L; Sun H; Wu Y; Li X; Li J; Wei Y; Han X; Zhang J; Jia X; Bai R; Jing L; Ding P; Liu H; Han D
    Adv Mater; 2016 Dec; 28(46):10230-10235. PubMed ID: 27723133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche.
    Bai R; Liu J; Zhang J; Shi J; Jin Z; Li Y; Ding X; Zhu X; Yuan C; Xiu B; Liu H; Yuan Z; Liu Z
    J Nanobiotechnology; 2021 Aug; 19(1):252. PubMed ID: 34425841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells.
    Shao H; Li T; Zhu R; Xu X; Yu J; Chen S; Song L; Ramakrishna S; Lei Z; Ruan Y; He L
    Biomaterials; 2018 Aug; 175():93-109. PubMed ID: 29804001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.
    Martinelli V; Cellot G; Toma FM; Long CS; Caldwell JH; Zentilin L; Giacca M; Turco A; Prato M; Ballerini L; Mestroni L
    ACS Nano; 2013 Jul; 7(7):5746-56. PubMed ID: 23734857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers.
    Ramón-Azcón J; Ahadian S; Estili M; Liang X; Ostrovidov S; Kaji H; Shiku H; Ramalingam M; Nakajima K; Sakka Y; Khademhosseini A; Matsue T
    Adv Mater; 2013 Aug; 25(29):4028-34. PubMed ID: 23798469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe
    Mou Y; Lv S; Xiong F; Han Y; Zhao Y; Li J; Gu N; Zhou J
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):121-130. PubMed ID: 27889952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness.
    Puckert C; Tomaskovic-Crook E; Gambhir S; Wallace GG; Crook JM; Higgins MJ
    Acta Biomater; 2020 Apr; 106():156-169. PubMed ID: 32084598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates.
    Wu S; Duan B; Lu A; Wang Y; Ye Q; Zhang L
    Carbohydr Polym; 2017 Oct; 174():830-840. PubMed ID: 28821138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs.
    Lisboa ES; Serafim C; Santana W; Dos Santos VLS; de Albuquerque-Junior RLC; Chaud MV; Cardoso JC; Jain S; Severino P; Souto EB
    J Control Release; 2024 Jan; 365():617-639. PubMed ID: 38043727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.
    Cancian G; Tozzi G; Hussain AA; De Mori A; Roldo M
    J Mater Sci Mater Med; 2016 Aug; 27(8):126. PubMed ID: 27324780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function.
    Zhou J; Chen J; Sun H; Qiu X; Mou Y; Liu Z; Zhao Y; Li X; Han Y; Duan C; Tang R; Wang C; Zhong W; Liu J; Luo Y; Mengqiu Xing M; Wang C
    Sci Rep; 2014 Jan; 4():3733. PubMed ID: 24429673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling.
    Barrejón M; Rauti R; Ballerini L; Prato M
    ACS Nano; 2019 Aug; 13(8):8879-8889. PubMed ID: 31329426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.