These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27770036)

  • 1. Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure.
    Joo JW; Kang EY; Org E; Furlotte N; Parks B; Hormozdiari F; Lusis AJ; Eskin E
    Genetics; 2016 Dec; 204(4):1379-1390. PubMed ID: 27770036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lasso multi-marker mixed model for association mapping with population structure correction.
    Rakitsch B; Lippert C; Stegle O; Borgwardt K
    Bioinformatics; 2013 Jan; 29(2):206-14. PubMed ID: 23175758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data.
    Wang P; Rahman M; Jin L; Xiong M
    BMC Genomics; 2016 Nov; 17(1):881. PubMed ID: 27821073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association studies with high-dimensional phenotypes.
    Marttinen P; Gillberg J; Havulinna A; Corander J; Kaski S
    Stat Appl Genet Mol Biol; 2013 Aug; 12(4):413-31. PubMed ID: 23759510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide detection of intervals of genetic heterogeneity associated with complex traits.
    Llinares-López F; Grimm DG; Bodenham DA; Gieraths U; Sugiyama M; Rowan B; Borgwardt K
    Bioinformatics; 2015 Jun; 31(12):i240-9. PubMed ID: 26072488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population structure in genetic studies: Confounding factors and mixed models.
    Sul JH; Martin LS; Eskin E
    PLoS Genet; 2018 Dec; 14(12):e1007309. PubMed ID: 30589851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNPs selection using support vector regression and genetic algorithms in GWAS.
    de Oliveira FC; Borges CC; Almeida FN; e Silva FF; da Silva Verneque R; da Silva MV; Arbex W
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S4. PubMed ID: 25573332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Modeling of Disease Status and Clinical Phenotypes To Increase Power in Genome-Wide Association Studies.
    Bilow M; Crespo F; Pan Z; Eskin E; Eyheramendy S
    Genetics; 2017 Mar; 205(3):1041-1047. PubMed ID: 28132020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible correlations in variant effects.
    Sun J; Oualkacha K; Forgetta V; Zheng HF; Brent Richards J; Ciampi A; Greenwood CM;
    Eur J Hum Genet; 2016 Aug; 24(9):1344-51. PubMed ID: 26860061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSEA: Phenotype Set Enrichment Analysis--a new method for analysis of multiple phenotypes.
    Ried JS; Döring A; Oexle K; Meisinger C; Winkelmann J; Klopp N; Meitinger T; Peters A; Suhre K; Wichmann HE; Gieger C
    Genet Epidemiol; 2012 Apr; 36(3):244-52. PubMed ID: 22714936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative methods for H1 simulations in genome-wide association studies.
    Perduca V; Sinoquet C; Mourad R; Nuel G
    Hum Hered; 2012; 73(2):95-104. PubMed ID: 22472690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Nonlinear Regression Approach for Genome-wide Detection of Marginal and Interacting Genetic Variations.
    Lee S; Lozano A; Kambadur P; Xing EP
    J Comput Biol; 2016 May; 23(5):372-89. PubMed ID: 27159633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal data analysis in genome-wide association studies.
    Beyene J; Hamid JS
    Genet Epidemiol; 2014 Sep; 38 Suppl 1():S68-73. PubMed ID: 25112192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A random forest approach to capture genetic effects in the presence of population structure.
    Stephan J; Stegle O; Beyer A
    Nat Commun; 2015 Jun; 6():7432. PubMed ID: 26109276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple testing correction in linear mixed models.
    Joo JW; Hormozdiari F; Han B; Eskin E
    Genome Biol; 2016 Apr; 17():62. PubMed ID: 27039378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mixed model reduces spurious genetic associations produced by population stratification in genome-wide association studies.
    Shin J; Lee C
    Genomics; 2015 Apr; 105(4):191-6. PubMed ID: 25640449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model to investigate SNPs' interaction in GWAS studies.
    Cocchi E; Drago A; Fabbri C; Serretti A
    J Neural Transm (Vienna); 2015 Jan; 122(1):145-53. PubMed ID: 25432432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal data analysis for genetic studies in the whole-genome sequencing era.
    Wu Z; Hu Y; Melton PE
    Genet Epidemiol; 2014 Sep; 38 Suppl 1():S74-80. PubMed ID: 25112193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical modeling in association studies of multiple phenotypes.
    Liu X; Jorgenson E; Witte JS
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S104. PubMed ID: 16451560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of family-based association testing to assess the genotype-phenotype association involved in complex traits using single-nucleotide polymorphisms.
    Wang MH; Guo M; Shugart YY
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S68. PubMed ID: 16451681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.