These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 27770186)
1. Fusion rate and clinical outcome in anterior lumbar interbody fusion with beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute. A prospective clinical study in fifty patients. Lechner R; Putzer D; Liebensteiner M; Bach C; Thaler M Int Orthop; 2017 Feb; 41(2):333-339. PubMed ID: 27770186 [TBL] [Abstract][Full Text] [Related]
2. The use of beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute in posterior lumbar interbody fusion. Thaler M; Lechner R; Gstöttner M; Kobel C; Bach C Eur Spine J; 2013 May; 22(5):1173-82. PubMed ID: 23073745 [TBL] [Abstract][Full Text] [Related]
3. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Dai LY; Jiang LS Spine (Phila Pa 1976); 2008 May; 33(12):1299-304. PubMed ID: 18496340 [TBL] [Abstract][Full Text] [Related]
4. Hybrid grafting using bone marrow aspirate combined with porous β-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting. Yamada T; Yoshii T; Sotome S; Yuasa M; Kato T; Arai Y; Kawabata S; Tomizawa S; Sakaki K; Hirai T; Shinomiya K; Okawa A Spine (Phila Pa 1976); 2012 Feb; 37(3):E174-9. PubMed ID: 21673618 [TBL] [Abstract][Full Text] [Related]
5. Single-center, consecutive series study of the use of a novel platelet-rich fibrin matrix (PRFM) and beta-tricalcium phosphate in posterolateral lumbar fusion. Callanan TC; Brecevich AT; Steiner CD; Xavier F; Iorio JA; Abjornson C; Cammisa FP Eur Spine J; 2019 Apr; 28(4):719-726. PubMed ID: 30511243 [TBL] [Abstract][Full Text] [Related]
6. Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Linovitz RJ; Peppers TA Orthopedics; 2002 May; 25(5 Suppl):s585-9. PubMed ID: 12038846 [TBL] [Abstract][Full Text] [Related]
7. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine. Pugely AJ; Petersen EB; DeVries-Watson N; Fredericks DC Iowa Orthop J; 2017; 37():193-198. PubMed ID: 28852357 [TBL] [Abstract][Full Text] [Related]
8. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. Buser Z; Brodke DS; Youssef JA; Meisel HJ; Myhre SL; Hashimoto R; Park JB; Tim Yoon S; Wang JC J Neurosurg Spine; 2016 Oct; 25(4):509-516. PubMed ID: 27231812 [TBL] [Abstract][Full Text] [Related]
9. A prospective comparative study of radiological outcomes after instrumented posterolateral fusion mass using autologous local bone or a mixture of beta-tcp and autologous local bone in the same patient. Kong S; Park JH; Roh SW Acta Neurochir (Wien); 2013 May; 155(5):765-70. PubMed ID: 23494134 [TBL] [Abstract][Full Text] [Related]
10. Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. Mobbs RJ; Maharaj M; Rao PJ J Neurosurg Spine; 2014 Dec; 21(6):867-76. PubMed ID: 25325176 [TBL] [Abstract][Full Text] [Related]
11. Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. Malham GM; Parker RM; Ellis NJ; Blecher CM; Chow FY; Claydon MH J Neurosurg Spine; 2014 Dec; 21(6):851-60. PubMed ID: 25279655 [TBL] [Abstract][Full Text] [Related]
13. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Parker RM; Malham GM Eur Spine J; 2017 Mar; 26(3):754-763. PubMed ID: 28028645 [TBL] [Abstract][Full Text] [Related]
15. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes as an adjunct for lumbar fusion. Kaiser MG; Groff MW; Watters WC; Ghogawala Z; Mummaneni PV; Dailey AT; Choudhri TF; Eck JC; Sharan A; Wang JC; Dhall SS; Resnick DK J Neurosurg Spine; 2014 Jul; 21(1):106-32. PubMed ID: 24980593 [TBL] [Abstract][Full Text] [Related]
16. Beta-tricalcium phosphate as a substitute for autograft in interbody fusion cages in the canine lumbar spine. Ohyama T; Kubo Y; Iwata H; Taki W J Neurosurg; 2002 Oct; 97(3 Suppl):350-4. PubMed ID: 12408391 [TBL] [Abstract][Full Text] [Related]
17. [Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement]. Matejka J; Zeman J; Belatka J Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):388-93. PubMed ID: 19912702 [TBL] [Abstract][Full Text] [Related]
18. [Use of artifiial bone in lateral interbody fusion of the lumbar spine: a prospective radiographic study]. Hrabálek L; Čecháková E; Buřval S; Adamus M; Langová K; Vaverka M Acta Chir Orthop Traumatol Cech; 2014; 81(6):392-8. PubMed ID: 25651294 [TBL] [Abstract][Full Text] [Related]
19. A prospective clinical and radiographic 12-month outcome study of patients undergoing single-level anterior cervical discectomy and fusion for symptomatic cervical degenerative disc disease utilizing a novel viable allogeneic, cancellous, bone matrix (trinity evolution™) with a comparison to historical controls. Vanichkachorn J; Peppers T; Bullard D; Stanley SK; Linovitz RJ; Ryaby JT Eur Spine J; 2016 Jul; 25(7):2233-8. PubMed ID: 26849141 [TBL] [Abstract][Full Text] [Related]
20. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. Wang MY; Vasudevan R; Mindea SA J Neurosurg Spine; 2014 Dec; 21(6):861-6. PubMed ID: 25303619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]