BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27770421)

  • 1. Enzyme Immobilization and Mediation with Osmium Redox Polymers.
    VandeZande GR; Olvany JM; Rutherford JL; Rasmussen M
    Methods Mol Biol; 2017; 1504():165-179. PubMed ID: 27770421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
    Suroviec AH
    Methods Mol Biol; 2017; 1504():203-213. PubMed ID: 27770424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes.
    Salaj-Kosla U; Scanlon MD; Baumeister T; Zahma K; Ludwig R; Ó Conghaile P; MacAodha D; Leech D; Magner E
    Anal Bioanal Chem; 2013 Apr; 405(11):3823-30. PubMed ID: 23274559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation.
    Hickey DP
    Methods Mol Biol; 2017; 1504():181-191. PubMed ID: 27770422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose electrodes based on cross-linked [Os(bpy)2Cl]+/2+ complexed poly(1-vinylimidazole) films.
    Ohara TJ; Rajagopalan R; Heller A
    Anal Chem; 1993 Dec; 65(23):3512-7. PubMed ID: 8297033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode.
    Fei J; Wu Y; Ji X; Wang J; Hu S; Gao Z
    Anal Sci; 2003 Sep; 19(9):1259-63. PubMed ID: 14516076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical wiring of Pseudomonas putida and Pseudomonas fluorescens with osmium redox polymers.
    Timur S; Haghighi B; Tkac J; Pazarlioğlu N; Telefoncu A; Gorton L
    Bioelectrochemistry; 2007 Sep; 71(1):38-45. PubMed ID: 17011836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite.
    Guo CX; Li CM
    Phys Chem Chem Phys; 2010 Oct; 12(38):12153-9. PubMed ID: 20714592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.
    Jirimali HD; Nagarale RK; Lee JM; Saravanakumar D; Shin W
    Chemphyschem; 2013 Jul; 14(10):2232-6. PubMed ID: 23674401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interference-free glucose biosensor based on an anionic redox polymer-mediated enzymatic oxidation of glucose.
    Deng H; Shen W; Gao Z
    Chemphyschem; 2013 Jul; 14(10):2343-7. PubMed ID: 23325705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediated glucose enzyme electrodes by cross-linking films of osmium redox complexes and glucose oxidase on electrodes.
    Ó Conghaile P; Kamireddy S; MacAodha D; Kavanagh P; Leech D
    Anal Bioanal Chem; 2013 Apr; 405(11):3807-12. PubMed ID: 23307119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer.
    Milton RD
    Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels.
    Mao F; Mano N; Heller A
    J Am Chem Soc; 2003 Apr; 125(16):4951-7. PubMed ID: 12696915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications.
    Guschin DA; Castillo J; Dimcheva N; Schuhmann W
    Anal Bioanal Chem; 2010 Oct; 398(4):1661-73. PubMed ID: 20652686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating immobilization performance of metal-organic coordination polymers through pre-coordination for biosensing.
    Yang H; Qi X; Wang X; Wang X; Wang Q; Qi P; Wang Z; Xu X; Fu Y; Yao S
    Anal Chim Acta; 2018 Apr; 1005():27-33. PubMed ID: 29389316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation.
    Holland JT; Lau C; Brozik S; Atanassov P; Banta S
    J Am Chem Soc; 2011 Dec; 133(48):19262-5. PubMed ID: 22050076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite.
    Lee S; Ringstrand BS; Stone DA; Firestone MA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2311-7. PubMed ID: 22548643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles.
    Haghighi B; Tabrizi MA
    Colloids Surf B Biointerfaces; 2013 Mar; 103():566-71. PubMed ID: 23261581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives.
    Kavanagh P; Leech D
    Phys Chem Chem Phys; 2013 Apr; 15(14):4859-69. PubMed ID: 23443881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite.
    Unnikrishnan B; Palanisamy S; Chen SM
    Biosens Bioelectron; 2013 Jan; 39(1):70-5. PubMed ID: 22795531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.