BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27770459)

  • 1. Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime.
    Marchetti M; Clerissi C; Yousfi Y; Gris C; Bouchez O; Rocha E; Cruveiller S; Jauneau A; Capela D; Masson-Boivin C
    Mol Ecol; 2017 Apr; 26(7):1818-1831. PubMed ID: 27770459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping bacterial symbiosis with legumes by experimental evolution.
    Marchetti M; Jauneau A; Capela D; Remigi P; Gris C; Batut J; Masson-Boivin C
    Mol Plant Microbe Interact; 2014 Sep; 27(9):956-64. PubMed ID: 25105803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.
    Klonowska A; Melkonian R; Miché L; Tisseyre P; Moulin L
    BMC Genomics; 2018 Jan; 19(1):105. PubMed ID: 29378510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.
    Remigi P; Capela D; Clerissi C; Tasse L; Torchet R; Bouchez O; Batut J; Cruveiller S; Rocha EP; Masson-Boivin C
    PLoS Biol; 2014 Sep; 12(9):e1001942. PubMed ID: 25181317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallels between experimental and natural evolution of legume symbionts.
    Clerissi C; Touchon M; Capela D; Tang M; Cruveiller S; Genthon C; Lopez-Roques C; Parker MA; Moulin L; Masson-Boivin C; Rocha EPC
    Nat Commun; 2018 Jun; 9(1):2264. PubMed ID: 29891837
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Daubech B; Poinsot V; Klonowska A; Capela D; Chaintreuil C; Moulin L; Marchetti M; Masson-Boivin C
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1635-1648. PubMed ID: 31617792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evolution of a plant pathogen into a legume symbiont.
    Marchetti M; Capela D; Glew M; Cruveiller S; Chane-Woon-Ming B; Gris C; Timmers T; Poinsot V; Gilbert LB; Heeb P; Médigue C; Batut J; Masson-Boivin C
    PLoS Biol; 2010 Jan; 8(1):e1000280. PubMed ID: 20084095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species.
    Platero R; James EK; Rios C; Iriarte A; Sandes L; Zabaleta M; Battistoni F; Fabiano E
    Appl Environ Microbiol; 2016 Jun; 82(11):3150-3164. PubMed ID: 26994087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evolution of nodule intracellular infection in legume symbionts.
    Guan SH; Gris C; Cruveiller S; Pouzet C; Tasse L; Leru A; Maillard A; Médigue C; Batut J; Masson-Boivin C; Capela D
    ISME J; 2013 Jul; 7(7):1367-77. PubMed ID: 23426010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil.
    Klonowska A; Moulin L; Ardley JK; Braun F; Gollagher MM; Zandberg JD; Marinova DV; Huntemann M; Reddy TBK; Varghese NJ; Woyke T; Ivanova N; Seshadri R; Kyrpides N; Reeve WG
    BMC Genomics; 2020 Mar; 21(1):214. PubMed ID: 32143559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont.
    Capela D; Marchetti M; Clérissi C; Perrier A; Guetta D; Gris C; Valls M; Jauneau A; Cruveiller S; Rocha EPC; Masson-Boivin C
    Mol Biol Evol; 2017 Oct; 34(10):2503-2521. PubMed ID: 28535261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Evolution of Legume Symbionts: What Have We Learnt?
    Doin de Moura GG; Remigi P; Masson-Boivin C; Capela D
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32210028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype.
    Melkonian R; Moulin L; Béna G; Tisseyre P; Chaintreuil C; Heulin K; Rezkallah N; Klonowska A; Gonzalez S; Simon M; Chen WM; James EK; Laguerre G
    Environ Microbiol; 2014 Jul; 16(7):2099-111. PubMed ID: 24131520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Cupriavidus taiwanensis Nodulation and Plant Growth Promoting Abilities by the Expression of an Exogenous ACC Deaminase Gene.
    Nascimento FX; Tavares MJ; Glick BR; Rossi MJ
    Curr Microbiol; 2018 Aug; 75(8):961-965. PubMed ID: 29516180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An invasive Mimosa in India does not adopt the symbionts of its native relatives.
    Gehlot HS; Tak N; Kaushik M; Mitra S; Chen WM; Poweleit N; Panwar D; Poonar N; Parihar R; Tak A; Sankhla IS; Ojha A; Rao SR; Simon MF; Reis Junior FB; Perigolo N; Tripathi AK; Sprent JI; Young JP; James EK; Gyaneshwar P
    Ann Bot; 2013 Jul; 112(1):179-96. PubMed ID: 23712450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Quorum Sensing as an Adaptation to Nodule Cell Infection during Experimental Evolution of Legume Symbionts.
    Tang M; Bouchez O; Cruveiller S; Masson-Boivin C; Capela D
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica.
    Chen WM; Wu CH; James EK; Chang JS
    J Hazard Mater; 2008 Mar; 151(2-3):364-71. PubMed ID: 17624667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils.
    Klonowska A; Chaintreuil C; Tisseyre P; Miché L; Melkonian R; Ducousso M; Laguerre G; Brunel B; Moulin L
    FEMS Microbiol Ecol; 2012 Sep; 81(3):618-35. PubMed ID: 22512707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and symbiotic variation of a long-term evolved Rhizobium strain under alkaline condition.
    Ji ZJ; Wu ZY; Chen WF; Wang ET; Yan H; Cui QG; Zhang JX; Wang L; Ma SJ
    Syst Appl Microbiol; 2020 Sep; 43(5):126125. PubMed ID: 32847791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta.
    Elliott GN; Chen WM; Chou JH; Wang HC; Sheu SY; Perin L; Reis VM; Moulin L; Simon MF; Bontemps C; Sutherland JM; Bessi R; de Faria SM; Trinick MJ; Prescott AR; Sprent JI; James EK
    New Phytol; 2007; 173(1):168-80. PubMed ID: 17176403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.