These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 27770698)
1. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface. Muth M; Rothkötter S; Paprosch S; Schmid RP; Schnitzlein K Colloids Surf B Biointerfaces; 2017 Jan; 149():280-287. PubMed ID: 27770698 [TBL] [Abstract][Full Text] [Related]
2. Competition between lipases and monoglycerides at interfaces. Reis P; Holmberg K; Miller R; Krägel J; Grigoriev DO; Leser ME; Watzke HJ Langmuir; 2008 Jul; 24(14):7400-7. PubMed ID: 18547084 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. Abreu Silveira E; Moreno-Perez S; Basso A; Serban S; Pestana Mamede R; Tardioli PW; Sanchez Farinas C; Rocha-Martin J; Fernandez-Lorente G; Guisan JM BMC Biotechnol; 2017 Dec; 17(1):88. PubMed ID: 29246143 [TBL] [Abstract][Full Text] [Related]
4. A comparative study on kinetics and substrate specificities of Phospholipase A Xin R; Khan FI; Zhao Z; Zhang Z; Yang B; Wang Y J Colloid Interface Sci; 2017 Feb; 488():149-154. PubMed ID: 27821336 [TBL] [Abstract][Full Text] [Related]
5. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Fregolente PB; Fregolente LV; Pinto GM; Batistella BC; Wolf-Maciel MR; Filho RM Appl Biochem Biotechnol; 2008 Mar; 146(1-3):165-72. PubMed ID: 18421596 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of polar lipids at the water-oil interface. Reis P; Miller R; Leser M; Watzke H; Fainerman VB; Holmberg K Langmuir; 2008 Jun; 24(11):5781-6. PubMed ID: 18454561 [TBL] [Abstract][Full Text] [Related]
7. A comparative study on two fungal lipases from Thermomyces lanuginosus and Yarrowia lipolytica shows the combined effects of detergents and pH on lipase adsorption and activity. Aloulou A; Puccinelli D; De Caro A; Leblond Y; Carrière F Biochim Biophys Acta; 2007 Dec; 1771(12):1446-56. PubMed ID: 18022403 [TBL] [Abstract][Full Text] [Related]
8. Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique. Chatzidaki MD; Mateos-Diaz E; Leal-Calderon F; Xenakis A; Carrière F Food Funct; 2016 May; 7(5):2258-69. PubMed ID: 27164003 [TBL] [Abstract][Full Text] [Related]
9. Lipase-catalyzed reactions at interfaces of two-phase systems and microemulsions. Reis P; Miller R; Leser M; Watzke H Appl Biochem Biotechnol; 2009 Sep; 158(3):706-21. PubMed ID: 18795240 [TBL] [Abstract][Full Text] [Related]
10. Studying Gastric Lipase Adsorption Onto Phospholipid Monolayers by Surface Tensiometry, Ellipsometry, and Atomic Force Microscopy. Bénarouche A; Sams L; Bourlieu C; Vié V; Point V; Cavalier JF; Carrière F Methods Enzymol; 2017; 583():255-278. PubMed ID: 28063494 [TBL] [Abstract][Full Text] [Related]
11. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference. El Alaoui M; Soulère L; Noiriel A; Queneau Y; Abousalham A Chem Phys Lipids; 2017 Aug; 206():43-52. PubMed ID: 28629973 [TBL] [Abstract][Full Text] [Related]
12. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. Torcello-Gómez A; Boudard C; Mackie AR Langmuir; 2018 Jun; 34(25):7536-7544. PubMed ID: 29870262 [TBL] [Abstract][Full Text] [Related]
13. Interfacial behaviour of biopolymer multilayers: Influence of in vitro digestive conditions. Corstens MN; Osorio Caltenco LA; de Vries R; Schroën K; Berton-Carabin CC Colloids Surf B Biointerfaces; 2017 May; 153():199-207. PubMed ID: 28242373 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic Hydrolysis of Triglycerides at the Water-Oil Interface Studied via Interfacial Rheology Analysis of Lipase Adsorption Layers. Javadi A; Dowlati S; Shourni S; Rusli S; Eckert K; Miller R; Kraume M Langmuir; 2021 Nov; 37(44):12919-12928. PubMed ID: 34699224 [TBL] [Abstract][Full Text] [Related]
15. Influence of glycosylation on the adsorption of Thermomyces lanuginosus lipase to hydrophobic and hydrophilic surfaces. Pinholt C; Fanø M; Wiberg C; Hostrup S; Bukrinsky JT; Frokjaer S; Norde W; Jorgensen L Eur J Pharm Sci; 2010 Jul; 40(4):273-81. PubMed ID: 20380877 [TBL] [Abstract][Full Text] [Related]
17. Selective concentration of EPA and DHA using Thermomyces lanuginosus lipase is due to fatty acid selectivity and not regioselectivity. Akanbi TO; Adcock JL; Barrow CJ Food Chem; 2013 May; 138(1):615-20. PubMed ID: 23265531 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Lage FA; Bassi JJ; Corradini MC; Todero LM; Luiz JH; Mendes AA Enzyme Microb Technol; 2016 Mar; 84():56-67. PubMed ID: 26827775 [TBL] [Abstract][Full Text] [Related]
19. Effect of oleic acid on the properties of protein adsorbed layers at water/oil interfaces: An EPR study combined with dynamic interfacial tension measurements. Kalogianni EP; Sklaviadis L; Nika S; Theochari I; Dimitreli G; Georgiou D; Papadimitriou V Colloids Surf B Biointerfaces; 2017 Oct; 158():498-506. PubMed ID: 28735222 [TBL] [Abstract][Full Text] [Related]
20. Ellipsometric study of molecular orientations of Thermomyces lanuginosus lipase at the air-water interface by simultaneous determination of refractive index and thickness. Muth M; Schmid RP; Schnitzlein K Colloids Surf B Biointerfaces; 2016 Apr; 140():60-66. PubMed ID: 26735895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]