These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27770874)

  • 21. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane.
    Ma S; Chen Z; Qiao F; Sun Y; Yang X; Deng X; Cen L; Cai Q; Wu M; Zhang X; Gao P
    J Dent; 2014 Dec; 42(12):1603-12. PubMed ID: 25193523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silk Fibroin/Collagen Blended Membrane Fabricated via a Green Papermaking Method for Potential Guided Bone Regeneration Application:
    Luo D; Yao C; Zhang R; Zhao R; Iqbal MZ; Mushtaq A; Lee IS; Kong X
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5788-5797. PubMed ID: 34724784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Preparation Method for Anisotropic Silk Fibroin Nerve Guidance Conduits and Its Evaluation In Vitro and in a Rat Sciatic Nerve Defect Model.
    Teuschl AH; Schuh C; Halbweis R; Pajer K; Márton G; Hopf R; Mosia S; Rünzler D; Redl H; Nógrádi A; Hausner T
    Tissue Eng Part C Methods; 2015 Sep; 21(9):945-57. PubMed ID: 25819471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration.
    Jabbari F; Hesaraki S; Houshmand B
    J Biomater Sci Polym Ed; 2019 Dec; 30(18):1779-1802. PubMed ID: 31506050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute.
    Kweon H; Lee KG; Chae CH; Balázsi C; Min SK; Kim JY; Choi JY; Kim SG
    J Oral Maxillofac Surg; 2011 Jun; 69(6):1578-86. PubMed ID: 21272978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source: a pilot study.
    Ríos CN; Skoracki RJ; Miller MJ; Satterfield WC; Mathur AB
    Tissue Eng Part A; 2009 Sep; 15(9):2717-25. PubMed ID: 19718840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical and biological performances of a semi-resorbable barrier membrane based on silk fibroin-glycerol-fish collagen material for guided bone regeneration.
    Pripatnanont P; Chankum C; Meesane J; Thonglam J
    J Biomater Appl; 2021 Nov; 36(5):930-942. PubMed ID: 34152233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration.
    Fenbo M; Xingyu X; Bin T
    Carbohydr Polym; 2019 Jun; 213():266-275. PubMed ID: 30879668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration.
    Geão C; Costa-Pinto AR; Cunha-Reis C; Ribeiro VP; Vieira S; Oliveira JM; Reis RL; Oliveira AL
    J Mater Sci Mater Med; 2019 Feb; 30(2):27. PubMed ID: 30747338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons.
    Zhang Q; Zhao Y; Yan S; Yang Y; Zhao H; Li M; Lu S; Kaplan DL
    Acta Biomater; 2012 Jul; 8(7):2628-38. PubMed ID: 22465574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of molecular weight on electro-spinning performance of regenerated silk.
    Park BK; Um IC
    Int J Biol Macromol; 2018 Jan; 106():1166-1172. PubMed ID: 28847607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.
    Bhattacharjee P; Kundu B; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    Biopolymers; 2015 May; 103(5):271-84. PubMed ID: 25418966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes.
    van Leeuwen AC; Huddleston Slater JJ; Gielkens PF; de Jong JR; Grijpma DW; Bos RR
    Acta Biomater; 2012 Apr; 8(4):1422-9. PubMed ID: 22186161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel silk protein barrier membranes for guided bone regeneration.
    Smeets R; Knabe C; Kolk A; Rheinnecker M; Gröbe A; Heiland M; Zehbe R; Sachse M; Große-Siestrup C; Wöltje M; Hanken H
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2603-2611. PubMed ID: 27731930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations.
    Lee OJ; Lee JM; Kim JH; Kim J; Kweon H; Jo YY; Park CH
    J Biomed Mater Res A; 2012 Aug; 100(8):2018-26. PubMed ID: 22581612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.