BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27770883)

  • 1. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications.
    Farzin A; Fathi M; Emadi R
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):21-31. PubMed ID: 27770883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications.
    Farzin A; Hassan S; Ebrahimi-Barough S; Ai A; Hasanzadeh E; Goodarzi A; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110009. PubMed ID: 31546356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.
    Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y
    Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured magnetic Mg
    Bigham A; Aghajanian AH; Behzadzadeh S; Sokhani Z; Shojaei S; Kaviani Y; Hassanzadeh-Tabrizi SA
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():83-95. PubMed ID: 30889758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy.
    Farzin A; Hassan S; Emadi R; Etesami SA; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():930-938. PubMed ID: 30813100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration.
    Sehgal RR; Roohani-Esfahani SI; Zreiqat H; Banerjee R
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1195-1211. PubMed ID: 25846217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M; Bakhsheshi-Rad HR; Omidi M; Ismail AF; Aziz M; Berto F; Chen X
    Biomed Phys Eng Express; 2020 Mar; 6(3):035011. PubMed ID: 33438656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite.
    Tampieri A; D'Alessandro T; Sandri M; Sprio S; Landi E; Bertinetti L; Panseri S; Pepponi G; Goettlicher J; Bañobre-López M; Rivas J
    Acta Biomater; 2012 Feb; 8(2):843-51. PubMed ID: 22005331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering.
    Farzin A; Etesami SA; Goodarzi A; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110032. PubMed ID: 31546347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method.
    Sadeghzade S; Shamoradi F; Emadi R; Tavangarian F
    J Mech Behav Biomed Mater; 2017 Apr; 68():1-7. PubMed ID: 28135637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: nanostructured surfaces and porosity.
    Ramiro-Gutiérrez ML; Will J; Boccaccini AR; Díaz-Cuenca A
    J Biomed Mater Res A; 2014 Sep; 102(9):2982-92. PubMed ID: 24123840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering.
    Liu X; Huang W; Fu H; Yao A; Wang D; Pan H; Lu WW
    J Mater Sci Mater Med; 2009 Jan; 20(1):365-72. PubMed ID: 18807266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.