BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 27770891)

  • 41. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide).
    Cho WK; Kong B; Choi IS
    Langmuir; 2007 May; 23(10):5678-82. PubMed ID: 17432887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of bioactive compounds on capillary inner surfaces bearing a dense thermoresponsive polymer brush.
    Koriyama T; Takayama Y; Hisatsune C; Asoh TA; Kikuchi A
    J Biomater Sci Polym Ed; 2017; 28(10-12):900-912. PubMed ID: 27827558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion.
    Alas GR; Agarwal R; Collard DM; GarcĂ­a AJ
    Acta Biomater; 2017 Sep; 59():108-116. PubMed ID: 28655657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel approach for UV-patterning with binary polymer brushes.
    Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-Assembling Protein-Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding.
    Liu Y; Nevanen TK; Paananen A; Kempe K; Wilson P; Johansson LS; Joensuu JJ; Linder MB; Haddleton DM; Milani R
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3599-3608. PubMed ID: 30566323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling.
    Dai G; Xie Q; Ai X; Ma C; Zhang G
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41750-41757. PubMed ID: 31603306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate.
    Kitano H; Kondo T; Kamada T; Iwanaga S; Nakamura M; Ohno K
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):455-62. PubMed ID: 21820283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release.
    Wan F; Pei X; Yu B; Ye Q; Zhou F; Xue Q
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4557-65. PubMed ID: 22931043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications.
    Xu FJ; Liu LY; Yang WT; Kang ET; Neoh KG
    Biomacromolecules; 2009 Jun; 10(6):1665-74. PubMed ID: 19402738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein adsorption on polymer-modified silica particle surface.
    Tsukagoshi T; Kondo Y; Yoshino N
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):101-7. PubMed ID: 17118630
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules.
    Park S; Lee KB; Choi IS; Langer R; Jon S
    Langmuir; 2007 Oct; 23(22):10902-5. PubMed ID: 17900199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature-controlled masking/unmasking of cell-adhesive cues with poly(ethylene glycol) methacrylate based brushes.
    Desseaux S; Klok HA
    Biomacromolecules; 2014 Oct; 15(10):3859-65. PubMed ID: 25208302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-Activated, Bioadhesive, Poly(2-hydroxyethyl methacrylate) Brush Coatings.
    Wang J; Karami P; Ataman NC; Pioletti DP; Steele TWJ; Klok HA
    Biomacromolecules; 2020 Jan; 21(1):240-249. PubMed ID: 31596075
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.
    Wei Y; Zhang J; Li H; Zhang L; Bi H
    J Biomater Sci Polym Ed; 2015; 26(18):1357-71. PubMed ID: 26381476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus.
    Kolewe KW; Kalasin S; Shave M; Schiffman JD; Santore MM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):320-330. PubMed ID: 30595023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of protein- and cell-resistant surfaces by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide).
    Bonduelle CV; Lau WM; Gillies ER
    ACS Appl Mater Interfaces; 2011 May; 3(5):1740-8. PubMed ID: 21491963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modified silica nanoparticle coatings: Dual antifouling effects of self-assembled quaternary ammonium and zwitterionic silanes.
    Knowles BR; Wagner P; Maclaughlin S; Higgins MJ; Molino PJ
    Biointerphases; 2020 Apr; 15(2):021009. PubMed ID: 32264685
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.