These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
676 related articles for article (PubMed ID: 27770914)
1. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin. Pan C; Hu Y; Hou Y; Liu T; Lin Y; Ye W; Hou Y; Gong T Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):438-449. PubMed ID: 27770914 [TBL] [Abstract][Full Text] [Related]
2. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy. Pan CJ; Hou Y; Wang YN; Gao F; Liu T; Hou YH; Zhu YF; Ye W; Wang LR Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():132-143. PubMed ID: 27287107 [TBL] [Abstract][Full Text] [Related]
3. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Wei Z; Tian P; Liu X; Zhou B Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Gao F; Hu Y; Gong Z; Liu T; Gong T; Liu S; Zhang C; Quan L; Kaveendran B; Pan C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109947. PubMed ID: 31499970 [TBL] [Abstract][Full Text] [Related]
5. A CO-releasing coating based on carboxymethyl chitosan-functionalized graphene oxide for improving the anticorrosion and biocompatibility of magnesium alloy stent materials. Pan C; Xu R; Chen J; Zhang Q; Deng L; Hong Q Int J Biol Macromol; 2024 Jun; 271(Pt 2):132487. PubMed ID: 38768910 [TBL] [Abstract][Full Text] [Related]
6. Blood compatibility and interaction with endothelial cells of titanium modified by sequential immobilization of poly (ethylene glycol) and heparin. Pan CJ; Hou YH; Zhang BB; Dong YX; Ding HY J Mater Chem B; 2014 Feb; 2(7):892-902. PubMed ID: 32261321 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Star 6-Arm Polyethylene Glycol-Heparin Copolymer to Construct Anticorrosive and Biocompatible Coating on Magnesium Alloy Surface. Hong Q; Zhou H; Cheng Y; Yang M; Zhang Q; Liu S; Xiong Q; Pan C Front Bioeng Biotechnol; 2022; 10():853487. PubMed ID: 35223805 [TBL] [Abstract][Full Text] [Related]
9. Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility. Li H; Peng F; Wang D; Qiao Y; Xu D; Liu X Biomater Sci; 2018 Jun; 6(7):1846-1858. PubMed ID: 29789824 [TBL] [Abstract][Full Text] [Related]
10. Co-immobilization of natural marine polysaccharides and bioactive peptides on ZE21B magnesium alloy to enhance hemocompatibility and cytocompatibility. Zhao Y; Wang Y; Chen L; Bai L; Guan S Int J Biol Macromol; 2024 Jun; 272(Pt 2):132747. PubMed ID: 38821301 [TBL] [Abstract][Full Text] [Related]
11. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility. Li G; Zhang F; Liao Y; Yang P; Huang N Colloids Surf B Biointerfaces; 2010 Nov; 81(1):255-62. PubMed ID: 20692134 [TBL] [Abstract][Full Text] [Related]
12. Application Of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion And Surface Biofunctionalization. Chen S; Zhang J; Chen Y; Zhao S; Chen M; Li X; Maitz MF; Wang J; Huang N ACS Appl Mater Interfaces; 2015 Nov; 7(44):24510-22. PubMed ID: 26479205 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of anticoagulation layer on titanium surface by sequential immobilization of poly (ethylene glycol) and albumin. Pan CJ; Hou YH; Zhang BB; Zhang LC Biomed Mater Eng; 2014; 24(1):781-7. PubMed ID: 24211964 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Pan C; Zhao Y; Yang Y; Yang M; Hong Q; Yang Z; Zhang Q Colloids Surf B Biointerfaces; 2021 Mar; 199():111541. PubMed ID: 33360929 [TBL] [Abstract][Full Text] [Related]
16. Improved anticoagulation of titanium by sequential immobilization of oligo(ethylene glycol) and 2-methacryloyloxyethyl phosphorylcholine. Pan CJ; Hou YH; Liu HQ; Ding HY; Dong YX Colloids Surf B Biointerfaces; 2013 Dec; 112():508-12. PubMed ID: 23972476 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. Lin Y; Yang Y; Zhao Y; Gao F; Guo X; Yang M; Hong Q; Yang Z; Dai J; Pan C J Mater Sci Mater Med; 2021 Mar; 32(3):24. PubMed ID: 33675428 [TBL] [Abstract][Full Text] [Related]
18. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Zou YH; Wang J; Cui LY; Zeng RC; Wang QZ; Han QX; Qiu J; Chen XB; Chen DC; Guan SK; Zheng YF Acta Biomater; 2019 Oct; 98():196-214. PubMed ID: 31154057 [TBL] [Abstract][Full Text] [Related]
19. In vitro corrosion and biocompatibility of binary magnesium alloys. Gu X; Zheng Y; Cheng Y; Zhong S; Xi T Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636 [TBL] [Abstract][Full Text] [Related]
20. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]