These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27770955)
41. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926 [TBL] [Abstract][Full Text] [Related]
42. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells. Laiva AL; Venugopal JR; Karuppuswamy P; Navaneethan B; Gora A; Ramakrishna S Int J Pharm; 2015 Apr; 483(1-2):115-23. PubMed ID: 25681729 [TBL] [Abstract][Full Text] [Related]
43. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Chouhan D; Chakraborty B; Nandi SK; Mandal BB Acta Biomater; 2017 Jan; 48():157-174. PubMed ID: 27746359 [TBL] [Abstract][Full Text] [Related]
44. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Ramadass SK; Nazir LS; Thangam R; Perumal RK; Manjubala I; Madhan B; Seetharaman S Colloids Surf B Biointerfaces; 2019 Mar; 175():636-643. PubMed ID: 30583219 [TBL] [Abstract][Full Text] [Related]
45. Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds loaded with glucosamine. Mirzaei S; Karkhaneh A; Soleimani M; Ardeshirylajimi A; Seyyed Zonouzi H; Hanaee-Ahvaz H J Biomed Mater Res A; 2017 Sep; 105(9):2461-2474. PubMed ID: 28481047 [TBL] [Abstract][Full Text] [Related]
46. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
47. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Kim H; Che L; Ha Y; Ryu W Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():324-35. PubMed ID: 24857500 [TBL] [Abstract][Full Text] [Related]
49. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin-collagen type I electrospun scaffolds. Maghdouri-White Y; Bowlin GL; Lemmon CA; Dréau D Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():37-44. PubMed ID: 25175185 [TBL] [Abstract][Full Text] [Related]
50. Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies. Gholipourmalekabadi M; Mozafari M; Bandehpour M; Salehi M; Sameni M; Caicedo HH; Mehdipour A; Hamidabadi HG; Samadikuchaksaraei A; Ghanbarian H Biotechnol Appl Biochem; 2015; 62(6):785-94. PubMed ID: 25471678 [TBL] [Abstract][Full Text] [Related]
52. Poly (vinyl alcohol)/Silk Fibroin/Ag NPs composite nanofibers for bone tissue engineering. Mejia ML; Moncada ME; Ossa-Orozco CP Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1176-1180. PubMed ID: 34891497 [TBL] [Abstract][Full Text] [Related]
53. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H; Li X; Zhou G; Fan H; Fan Y Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391 [TBL] [Abstract][Full Text] [Related]
54. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
55. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
56. Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction. Liu G; Fu M; Li F; Fu W; Zhao Z; Xia H; Niu Y Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110810. PubMed ID: 32279818 [TBL] [Abstract][Full Text] [Related]
57. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
58. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Chen JP; Su CH Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584 [TBL] [Abstract][Full Text] [Related]
59. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
60. Potential of non-mulberry silk protein fibroin blended and grafted poly(Є-caprolactone) nanofibrous matrices for in vivo bone regeneration. Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Das P; Nandi SK; Kundu SC Colloids Surf B Biointerfaces; 2016 Jul; 143():431-439. PubMed ID: 27037780 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]