These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27771264)

  • 1. CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition.
    Rahimi M; Movahedirad S; Shahhosseini S
    Ultrason Sonochem; 2017 Mar; 35(Pt A):359-374. PubMed ID: 27771264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.
    Mottyll S; Skoda R
    Ultrason Sonochem; 2016 Jul; 31():570-89. PubMed ID: 26964985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the ultrasound field of high viscosity mixtures: Experimental and numerical investigation of a lab scale batch reactor.
    Bampouli A; Goris Q; Van Olmen J; Solmaz S; Noorul Hussain M; Stefanidis GD; Van Gerven T
    Ultrason Sonochem; 2023 Jul; 97():106444. PubMed ID: 37257210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.
    Žnidarčič A; Mettin R; Dular M
    Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIV quantification of the flow induced by an ultrasonic horn and numerical modeling of the flow and related processing times.
    Schenker MC; Pourquié MJ; Eskin DG; Boersma BJ
    Ultrason Sonochem; 2013 Jan; 20(1):502-9. PubMed ID: 22658635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation and acoustic streaming generated by different sonotrode tips.
    Fang Y; Yamamoto T; Komarov S
    Ultrason Sonochem; 2018 Nov; 48():79-87. PubMed ID: 30080589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.
    Sajjadi B; Raman AA; Ibrahim S
    Ultrason Sonochem; 2015 May; 24():193-203. PubMed ID: 25435397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cavitation under ultrasonic horn tip - Proposition of an acoustic cavitation parameter.
    Kozmus G; Zevnik J; Hočevar M; Dular M; Petkovšek M
    Ultrason Sonochem; 2022 Sep; 89():106159. PubMed ID: 36099775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.
    Loh BG; Hyun S; Ro PI; Kleinstreuer C
    J Acoust Soc Am; 2002 Feb; 111(2):875-83. PubMed ID: 11863189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of compressible fluid flow in an ultrasonic suction pump.
    Wada Y; Koyama D; Nakamura K
    Ultrasonics; 2016 Aug; 70():191-8. PubMed ID: 27183101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor.
    Rahimi M; Shahhosseini S; Movahedirad S
    Ultrason Sonochem; 2019 Apr; 52():77-87. PubMed ID: 30477791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.