These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27771436)

  • 21. In vivo imaging of oligonucleotide delivery.
    Takeshita F; Takahashi RU; Onodera J; Ochiya T
    Methods Mol Biol; 2012; 872():243-53. PubMed ID: 22700416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locked nucleic acids: a promising molecular family for gene-function analysis and antisense drug development.
    Orum H; Wengel J
    Curr Opin Mol Ther; 2001 Jun; 3(3):239-43. PubMed ID: 11497347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delivery of oligonucleotides with lipid nanoparticles.
    Wang Y; Miao L; Satterlee A; Huang L
    Adv Drug Deliv Rev; 2015 Jun; 87():68-80. PubMed ID: 25733311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic RNA-silencing oligonucleotides in metabolic diseases.
    Goga A; Stoffel M
    Nat Rev Drug Discov; 2022 Jun; 21(6):417-439. PubMed ID: 35210608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Oligonucleotide therapeutics - an emerging novel class of compounds].
    Wacheck V
    Wien Med Wochenschr; 2006 Sep; 156(17-18):481-7. PubMed ID: 17041803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.
    Costales MG; Rzuczek SG; Disney MD
    Bioorg Med Chem Lett; 2016 Jun; 26(11):2605-9. PubMed ID: 27117425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiovascular RNA interference therapy: the broadening tool and target spectrum.
    Poller W; Tank J; Skurk C; Gast M
    Circ Res; 2013 Aug; 113(5):588-602. PubMed ID: 23948584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases.
    Sadeghian I; Akbarpour M; Chafjiri FMA; Chafjiri PMA; Heidari R; Morowvat MH; Sadeghian R; Raee MJ; Negahdaripour M
    Naunyn Schmiedebergs Arch Pharmacol; 2024 Mar; 397(3):1275-1310. PubMed ID: 37688622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oligonucleotide-based therapy for neurodegenerative diseases.
    Magen I; Hornstein E
    Brain Res; 2014 Oct; 1584():116-28. PubMed ID: 24727531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.
    DeVincenzo JP
    Antivir Ther; 2012; 17(1 Pt B):213-25. PubMed ID: 22311654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells.
    Dean JM; DeLong RK
    Methods Mol Biol; 2015; 1297():187-96. PubMed ID: 25896004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics.
    Menzi M; Lightfoot HL; Hall J
    Future Med Chem; 2015; 7(13):1733-49. PubMed ID: 26424049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligonucleotide analogues as modulators of the expression and function of noncoding RNAs (ncRNAs): emerging therapeutics applications.
    Avitabile C; Cimmino A; Romanelli A
    J Med Chem; 2014 Dec; 57(24):10220-40. PubMed ID: 25280271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligonucleotides for upregulating gene expression.
    Khorkova O; Hsiao J; Wahlestedt C
    Pharm Pat Anal; 2013 Mar; 2(2):215-29. PubMed ID: 24237027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of target validation and the impact of oligonucleotides.
    Jones SW; Lindsay MA
    Curr Opin Mol Ther; 2004 Oct; 6(5):546-50. PubMed ID: 15537056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts.
    Farrelly-Rosch A; Lau CL; Patil N; Turner BJ; Shabanpoor F
    Neurochem Int; 2017 Sep; 108():213-221. PubMed ID: 28389270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.
    Crombez L; Morris MC; Heitz F; Divita G
    Methods Mol Biol; 2011; 764():59-73. PubMed ID: 21748633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates.
    Grijalvo S; Alagia A; Jorge AF; Eritja R
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29415514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates.
    Taskova M; Mantsiou A; Astakhova K
    Chembiochem; 2017 Sep; 18(17):1671-1682. PubMed ID: 28614621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.