BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27771489)

  • 1. Tailoring biomaterial scaffolds for osteochondral repair.
    Camarero-Espinosa S; Cooper-White J
    Int J Pharm; 2017 May; 523(2):476-489. PubMed ID: 27771489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine.
    Ramzan F; Salim A; Khan I
    Stem Cell Rev Rep; 2023 Aug; 19(6):1615-1634. PubMed ID: 37074547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration.
    Lin X; Chen J; Qiu P; Zhang Q; Wang S; Su M; Chen Y; Jin K; Qin A; Fan S; Chen P; Zhao X
    Osteoarthritis Cartilage; 2018 Mar; 26(3):433-444. PubMed ID: 29233641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue Engineering: An Alternative to Repair Cartilage.
    Campos Y; Almirall A; Fuentes G; Bloem HL; Kaijzel EL; Cruz LJ
    Tissue Eng Part B Rev; 2019 Aug; 25(4):357-373. PubMed ID: 30913997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what's new?
    López-Ruiz E; Jiménez G; García MÁ; Antich C; Boulaiz H; Marchal JA; Perán M
    Expert Opin Ther Pat; 2016 Aug; 26(8):877-90. PubMed ID: 27337937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.
    Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T
    Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteochondral tissue engineering: current strategies and challenges.
    Nukavarapu SP; Dorcemus DL
    Biotechnol Adv; 2013; 31(5):706-21. PubMed ID: 23174560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Biorheology; 2008; 45(3-4):501-12. PubMed ID: 18836249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.
    Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW
    Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue Engineering Strategies for Osteochondral Repair.
    Maia FR; Carvalho MR; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1059():353-371. PubMed ID: 29736582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds.
    Sakata R; Iwakura T; Reddi AH
    Tissue Eng Part B Rev; 2015 Oct; 21(5):461-73. PubMed ID: 25951707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives in multiphasic osteochondral tissue engineering.
    Jeon JE; Vaquette C; Klein TJ; Hutmacher DW
    Anat Rec (Hoboken); 2014 Jan; 297(1):26-35. PubMed ID: 24293311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair.
    Rojas-Murillo JA; Simental-Mendía MA; Moncada-Saucedo NK; Delgado-Gonzalez P; Islas JF; Roacho-Pérez JA; Garza-Treviño EN
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayered Scaffold with a Compact Interfacial Layer Enhances Osteochondral Defect Repair.
    Jia S; Wang J; Zhang T; Pan W; Li Z; He X; Yang C; Wu Q; Sun W; Xiong Z; Hao D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20296-20305. PubMed ID: 29808989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.