BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27771559)

  • 1. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation.
    Milham MP; Banich MT
    Hum Brain Mapp; 2005 Jul; 25(3):328-35. PubMed ID: 15834861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the lateral prefrontal cortex and anterior cingulate in stimulus-response association reversals.
    Parris BA; Thai NJ; Benattayallah A; Summers IR; Hodgson TL
    J Cogn Neurosci; 2007 Jan; 19(1):13-24. PubMed ID: 17214559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the brain mediate interpretation of incongruent auditory emotions? The neural response to prosody in the presence of conflicting lexico-semantic cues.
    Mitchell RL
    Eur J Neurosci; 2006 Dec; 24(12):3611-8. PubMed ID: 17229109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER; Mangels JA
    J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition.
    Hazeltine E; Bunge SA; Scanlon MD; Gabrieli JD
    Neuropsychologia; 2003; 41(9):1208-17. PubMed ID: 12753960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features.
    Weissman DH; Giesbrecht B; Song AW; Mangun GR; Woldorff MG
    Neuroimage; 2003 Aug; 19(4):1361-8. PubMed ID: 12948694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L; Koppelstaetter F; Delazer M; Siedentopf C; Rhomberg P; Golaszewski S; Felber S; Ischebeck A
    Neuroimage; 2005 Apr; 25(3):888-98. PubMed ID: 15808989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response-specific sources of dual-task interference in human pre-motor cortex.
    Marois R; Larson JM; Chun MM; Shima D
    Psychol Res; 2006 Nov; 70(6):436-47. PubMed ID: 16283409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and maintenance of stimulus-response rules during preparation and performance of a spatial choice-reaction task.
    Schumacher EH; Cole MW; D'Esposito M
    Brain Res; 2007 Mar; 1136(1):77-87. PubMed ID: 17223091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of both prefrontal and inferior parietal cortex in dual-task performance.
    Collette F; Olivier L; Van der Linden M; Laureys S; Delfiore G; Luxen A; Salmon E
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):237-51. PubMed ID: 15993762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Males and females differ in brain activation during cognitive tasks.
    Bell EC; Willson MC; Wilman AH; Dave S; Silverstone PH
    Neuroimage; 2006 Apr; 30(2):529-38. PubMed ID: 16260156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.