These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27771567)

  • 21. Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn.
    Li LZ; Zhou DM; Peijnenburg WJ; van Gestel CA; Jin SY; Wang YJ; Wang P
    Environ Int; 2011 Aug; 37(6):1098-104. PubMed ID: 21402408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna.
    Xiao Y; Vijver MG; Chen G; Peijnenburg WJ
    Environ Sci Technol; 2015 Apr; 49(7):4657-64. PubMed ID: 25785366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of acute toxicity, accumulation, and depuration of ZnO nanoparticles in Daphnia magna.
    Santos-Rasera JR; Monteiro RTR; de Carvalho HWP
    Sci Total Environ; 2022 May; 821():153307. PubMed ID: 35065106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate.
    Dai H; Sun T; Han T; Guo Z; Wang X; Chen Y
    Environ Res; 2020 Dec; 191():110086. PubMed ID: 32846168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials?
    Melegari SP; Fuzinatto CF; Gonçalves RA; Oscar BV; Vicentini DS; Matias WG
    Chemosphere; 2019 Jun; 224():237-246. PubMed ID: 30822730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate.
    Kim RO; Choi JS; Kim BC; Kim WK
    Bull Environ Contam Toxicol; 2017 Feb; 98(2):183-189. PubMed ID: 27995293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects.
    Sávoly Z; Hrács K; Pemmer B; Streli C; Záray G; Nagy PI
    Environ Sci Pollut Res Int; 2016 May; 23(10):9669-78. PubMed ID: 26846243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna.
    Wang Y; Qin S; Li Y; Wu G; Sun Y; Zhang L; Huang Y; Lyu K; Chen Y; Yang Z
    Chemosphere; 2019 Oct; 233():482-492. PubMed ID: 31181495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.
    Das P; Xenopoulos MA; Metcalfe CD
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Oxidative Stress on Artemia salina and Daphnia magna After Exposure to Zn and ZnO Nanoparticles.
    Ates M; Danabas D; Ertit Tastan B; Unal I; Cicek Cimen IC; Aksu O; Kutlu B; Arslan Z
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):206-214. PubMed ID: 31748865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The significance of nanomaterial post-exposure responses in Daphnia magna standard acute immobilisation assay: Example with testing TiO
    Novak S; Jemec Kokalj A; Hočevar M; Godec M; Drobne D
    Ecotoxicol Environ Saf; 2018 May; 152():61-66. PubMed ID: 29407783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.
    Heggelund LR; Diez-Ortiz M; Lofts S; Lahive E; Jurkschat K; Wojnarowicz J; Cedergreen N; Spurgeon D; Svendsen C
    Nanotoxicology; 2014 Aug; 8(5):559-72. PubMed ID: 23739012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna.
    Zhu X; Chang Y; Chen Y
    Chemosphere; 2010 Jan; 78(3):209-15. PubMed ID: 19963236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison on the effects of water-borne and dietary-borne accumulated ZnO nanoparticles on Daphnia magna.
    Chen Y; Wu F; Li W; Luan T; Lin L
    Chemosphere; 2017 Dec; 189():94-103. PubMed ID: 28934659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.
    Campos B; Rivetti C; Rosenkranz P; Navas JM; Barata C
    Aquat Toxicol; 2013 Apr; 130-131():174-83. PubMed ID: 23416410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure.
    Botha TL; Boodhia K; Wepener V
    Aquat Toxicol; 2016 Jan; 170():104-111. PubMed ID: 26650707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecotoxicity of nanoparticles of CuO and ZnO in natural water.
    Blinova I; Ivask A; Heinlaan M; Mortimer M; Kahru A
    Environ Pollut; 2010 Jan; 158(1):41-7. PubMed ID: 19800155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature and concentration of ZnO particles affect life history traits and oxidative stress in Daphnia magna.
    Sanpradit P; Buapet P; Kongseng S; Peerakietkhajorn S
    Aquat Toxicol; 2020 Jul; 224():105517. PubMed ID: 32485496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna.
    Adam N; Vakurov A; Knapen D; Blust R
    J Hazard Mater; 2015; 283():416-22. PubMed ID: 25464278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna.
    Oleszczuk P; Jośko I; Skwarek E
    Ecotoxicology; 2015 Nov; 24(9):1923-32. PubMed ID: 26410374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.