These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 27771579)
1. Functional diversity within the Penicillium roqueforti species. Gillot G; Jany JL; Poirier E; Maillard MB; Debaets S; Thierry A; Coton E; Coton M Int J Food Microbiol; 2017 Jan; 241():141-150. PubMed ID: 27771579 [TBL] [Abstract][Full Text] [Related]
2. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Caron T; Piver ML; Péron AC; Lieben P; Lavigne R; Brunel S; Roueyre D; Place M; Bonnarme P; Giraud T; Branca A; Landaud S; Chassard C Int J Food Microbiol; 2021 Sep; 354():109174. PubMed ID: 34103155 [TBL] [Abstract][Full Text] [Related]
3. Tyrosine Induced Metabolome Alterations of Hammerl R; Frank O; Dietz M; Hirschmann J; Hofmann T J Agric Food Chem; 2019 Aug; 67(31):8500-8509. PubMed ID: 31298534 [TBL] [Abstract][Full Text] [Related]
4. Insights into Penicillium roqueforti Morphological and Genetic Diversity. Gillot G; Jany JL; Coton M; Le Floch G; Debaets S; Ropars J; López-Villavicencio M; Dupont J; Branca A; Giraud T; Coton E PLoS One; 2015; 10(6):e0129849. PubMed ID: 26091176 [TBL] [Abstract][Full Text] [Related]
5. Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Fernández-Bodega MA; Mauriz E; Gómez A; Martín JF Int J Food Microbiol; 2009 Nov; 136(1):18-25. PubMed ID: 19837474 [TBL] [Abstract][Full Text] [Related]
6. Roquefortine C occurrence in blue cheese. Finoli C; Vecchio A; Galli A; Dragoni I J Food Prot; 2001 Feb; 64(2):246-51. PubMed ID: 11271775 [TBL] [Abstract][Full Text] [Related]
7. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. García-Estrada C; Martín JF Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495 [TBL] [Abstract][Full Text] [Related]
8. Mycotoxin-forming ability of two Penicillium roqueforti strains in blue moldy tulum cheese ripened at various temperatures. Erdogan A; Sert S J Food Prot; 2004 Mar; 67(3):533-5. PubMed ID: 15035369 [TBL] [Abstract][Full Text] [Related]
9. Genetic diversity and population structure of Penicillium roqueforti isolates from Turkish blue cheeses. Kirtil HE; Orakci A; Arici M; Metin B Int J Food Microbiol; 2024 Aug; 421():110801. PubMed ID: 38924974 [TBL] [Abstract][Full Text] [Related]
10. Isolation of moulds capable of producing mycotoxins from blue mouldy Tulum cheeses produced in Turkey. Erdogan A; Gurses M; Sert S Int J Food Microbiol; 2003 Aug; 85(1-2):83-5. PubMed ID: 12810273 [TBL] [Abstract][Full Text] [Related]
11. Examination of the taxonomic position of Penicillium strains used in blue cheese production based on the partial sequence of β-tubulin. Ogawa Y; Hirose D; Akiyama A; Ichinoe M Shokuhin Eiseigaku Zasshi; 2014; 55(3):157-61. PubMed ID: 24990763 [TBL] [Abstract][Full Text] [Related]
12. Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti. Fontaine K; Hymery N; Lacroix MZ; Puel S; Puel O; Rigalma K; Gaydou V; Coton E; Mounier J Int J Food Microbiol; 2015 Dec; 215():187-93. PubMed ID: 26320771 [TBL] [Abstract][Full Text] [Related]
13. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese. Cakmakci S; Gurses M; Hayaloglu AA; Cetin B; Sekerci P; Dagdemir E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(2):245-9. PubMed ID: 25580944 [TBL] [Abstract][Full Text] [Related]
14. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti. Ropars J; López-Villavicencio M; Snirc A; Lacoste S; Giraud T PLoS One; 2017; 12(3):e0171387. PubMed ID: 28248964 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of closely related fungi by electronic nose analysis. Karlshøj K; Nielsen PV; Larsen TO J Food Sci; 2007 Aug; 72(6):M187-92. PubMed ID: 17995685 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Penicillium roqueforti strains used as cheese starter cultures by RAPD typing. Geisen R; Cantor MD; Hansen TK; Holzapfel WH; Jakobsen M Int J Food Microbiol; 2001 May; 65(3):183-91. PubMed ID: 11393687 [TBL] [Abstract][Full Text] [Related]
17. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659 [TBL] [Abstract][Full Text] [Related]
18. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Gillot G; Jany JL; Dominguez-Santos R; Poirier E; Debaets S; Hidalgo PI; Ullán RV; Coton E; Coton M Food Microbiol; 2017 Apr; 62():239-250. PubMed ID: 27889155 [TBL] [Abstract][Full Text] [Related]
19. The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti. Rojas-Aedo JF; Gil-Durán C; Goity A; Vaca I; Levicán G; Larrondo LF; Chávez R Microbiol Res; 2018; 212-213():67-74. PubMed ID: 29853169 [TBL] [Abstract][Full Text] [Related]
20. Functional Metabolome Analysis of Penicillium roqueforti by Means of Differential Off-Line LC-NMR. Hammerl R; Frank O; Schmittnägel T; Ehrmann MA; Hofmann T J Agric Food Chem; 2019 May; 67(18):5135-5146. PubMed ID: 30950274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]