These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27771988)

  • 1. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time.
    Truong DT; Li MS
    J Phys Chem B; 2018 May; 122(17):4693-4699. PubMed ID: 29630379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Good is Jarzynski's Equality for Computer-Aided Drug Design?
    Ho K; Truong DT; Li MS
    J Phys Chem B; 2020 Jul; 124(26):5338-5349. PubMed ID: 32484689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Self-Adaptive Steered Molecular Dynamics Method Based on Minimization of Stretching Force Reveals the Binding Affinity of Protein-Ligand Complexes.
    Gu J; Li H; Wang X
    Molecules; 2015 Oct; 20(10):19236-51. PubMed ID: 26506335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating potentials of mean force from steered molecular dynamics simulations.
    Park S; Schulten K
    J Chem Phys; 2004 Apr; 120(13):5946-61. PubMed ID: 15267476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics.
    Zhuang Y; Thota N; Quirk S; Hernandez R
    J Chem Theory Comput; 2022 Aug; 18(8):4649-4659. PubMed ID: 35830368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic information for cardiotoxin protein desorption from a methyl-terminated self-assembled monolayer using steered molecular dynamics simulation.
    Hung SW; Hsiao PY; Chieng CC
    J Chem Phys; 2011 May; 134(19):194705. PubMed ID: 21599080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics.
    Vuong QV; Nguyen TT; Li MS
    J Chem Inf Model; 2015 Dec; 55(12):2731-8. PubMed ID: 26595261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5.
    Patel JS; Berteotti A; Ronsisvalle S; Rocchia W; Cavalli A
    J Chem Inf Model; 2014 Feb; 54(2):470-80. PubMed ID: 24437446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.
    Dickson A; Lotz SD
    J Phys Chem B; 2016 Jun; 120(24):5377-85. PubMed ID: 27231969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of mean force calculations of ligand binding to ion channels from Jarzynski's equality and umbrella sampling.
    Baştuğ T; Chen PC; Patra SM; Kuyucak S
    J Chem Phys; 2008 Apr; 128(15):155104. PubMed ID: 18433285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity.
    Shi D; Bai Q; Zhou S; Liu X; Liu H; Yao X
    Proteins; 2018 Jan; 86(1):43-56. PubMed ID: 29023988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.
    Hu G; Xu S; Wang J
    Chem Biol Drug Des; 2015 Dec; 86(6):1351-9. PubMed ID: 26032728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating Rare Dissociative Processes in Biomolecules Using Selectively Scaled MD Simulations.
    Deb I; Frank AT
    J Chem Theory Comput; 2019 Nov; 15(11):5817-5828. PubMed ID: 31509413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of Takeout proteins' ligand binding and release mechanism using molecular dynamics simulation.
    Zhang H; Yu H; Zhao X; Liu X; Feng X; Huang X
    J Biomol Struct Dyn; 2017 May; 35(7):1464-1473. PubMed ID: 27142129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate.
    Chen LY
    J Chem Theory Comput; 2015 Apr; 11(4):1928-38. PubMed ID: 25937822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization?
    Michel J; Verdonk ML; Essex JW
    J Med Chem; 2006 Dec; 49(25):7427-39. PubMed ID: 17149872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.