These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 27773256)
1. An objective comparison of commercially-available cavitation meters. Sarno D; Hodnett M; Wang L; Zeqiri B Ultrason Sonochem; 2017 Jan; 34():354-364. PubMed ID: 27773256 [TBL] [Abstract][Full Text] [Related]
2. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Zeqiri B; Hodnett M; Carroll AJ Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538 [TBL] [Abstract][Full Text] [Related]
3. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field. Hodnett M; Zeqiri B IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923 [TBL] [Abstract][Full Text] [Related]
4. A novel sensor for monitoring acoustic cavitation. Part II: Prototype performance evaluation. Zeqiri B; Lee ND; Hodnett M; Gélat PN IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1351-62. PubMed ID: 14609075 [TBL] [Abstract][Full Text] [Related]
7. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. Wang M; Zhou Y Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677 [TBL] [Abstract][Full Text] [Related]
8. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn. Žnidarčič A; Mettin R; Dular M Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548 [TBL] [Abstract][Full Text] [Related]
9. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields. Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075 [TBL] [Abstract][Full Text] [Related]
10. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
11. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252 [TBL] [Abstract][Full Text] [Related]
12. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model. Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680 [TBL] [Abstract][Full Text] [Related]
13. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation. Jenderka KV; Koch C Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752 [TBL] [Abstract][Full Text] [Related]
14. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles. Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011 [TBL] [Abstract][Full Text] [Related]