BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27773268)

  • 1. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.
    Sazgarnia A; Shanei A; Shanei MM
    Ultrason Sonochem; 2014 Jan; 21(1):268-74. PubMed ID: 23938062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of targeted gold nanoparticles size on acoustic cavitation: An in vitro study on melanoma cells.
    Shanei A; Akbari-Zadeh H; Attaran N; Salamat MR; Baradaran-Ghahfarokhi M
    Ultrasonics; 2020 Mar; 102():106061. PubMed ID: 31948804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on generating hydroxyl radicals by single and two-frequency ultrasound with gold nanoparticles and protoporphyrin IX.
    Tabatabaei ZS; Rajabi O; Nassirli H; Vejdani Noghreiyan A; Sazgarnia A
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1039-1047. PubMed ID: 31617155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model.
    Sazgarnia A; Shanei A; Taheri AR; Meibodi NT; Eshghi H; Attaran N; Shanei MM
    J Ultrasound Med; 2013 Mar; 32(3):475-83. PubMed ID: 23443188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles.
    Sazgarnia A; Shanei A; Eshghi H; Hassanzadeh-Khayyat M; Esmaily H; Shanei MM
    Ultrasonics; 2013 Jan; 53(1):29-35. PubMed ID: 22560541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM
    Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Nucleation of Cavitation from Plasmonic Gold Nanoparticles for Enhancing High Intensity Focused Ultrasound Applications.
    McLaughlan JR
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N
    J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic cavitation for engineering of gold sols in silver nitrate solutions.
    Radziuk DV; Shchukin DG; Möhwald H
    Ultrason Sonochem; 2011 Jul; 18(4):853-63. PubMed ID: 21215672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating.
    Yildirim A; Shi D; Roy S; Blum NT; Chattaraj R; Cha JN; Goodwin AP
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36786-36795. PubMed ID: 30339360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound.
    Yusof NS; Ashokkumar M
    Chemphyschem; 2015 Mar; 16(4):775-81. PubMed ID: 25598360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
    Krüger C; Agarwal S; Greiner A
    J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach.
    Guidelli EJ; Baffa O
    Med Phys; 2014 Mar; 41(3):032101. PubMed ID: 24593736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy.
    McLaughlan JR; Cowell DMJ; Freear S
    Phys Med Biol; 2017 Dec; 63(1):015004. PubMed ID: 29098986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonication effects on non-radical reactions. A sonochemistry beyond the cavitation?
    Tuulmets A; Piiskop S; Järv J; Salmar S
    Ultrason Sonochem; 2014 May; 21(3):997-1001. PubMed ID: 24279982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation.
    Shanei A; Sazgarnia A
    Iran J Basic Med Sci; 2019 Aug; 22(8):848-855. PubMed ID: 31579439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic alloying of preformed gold and silver nanoparticles.
    Radziuk DV; Zhang W; Shchukin D; Möhwald H
    Small; 2010 Feb; 6(4):545-53. PubMed ID: 20108230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.