These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27773268)

  • 21. An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation.
    Shanei A; Sazgarnia A
    Iran J Basic Med Sci; 2019 Aug; 22(8):848-855. PubMed ID: 31579439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.
    Jin Q; Kang ST; Chang YC; Zheng H; Yeh CK
    Ultrason Sonochem; 2016 Sep; 32():1-7. PubMed ID: 27150739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assay of hydroxyl radicals generated by focused ultrasound.
    Villeneuve L; Alberti L; Steghens JP; Lancelin JM; Mestas JL
    Ultrason Sonochem; 2009 Mar; 16(3):339-44. PubMed ID: 19010709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress.
    Wu T; Farny CH; Roy RA; Holt RG
    J Acoust Soc Am; 2011 Nov; 130(5):3252-63. PubMed ID: 22087997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.
    Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Floating synthesis with enhanced catalytic performance via acoustic levitation processing.
    Zheng Y; Zhuang Q; Ruan Y; Zhu G; Xie W; Jiang Y; Li H; Wei B
    Ultrason Sonochem; 2022 Jun; 87():106051. PubMed ID: 35660276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel nanosonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model.
    Sazgarnia A; Shanei A; Meibodi NT; Eshghi H; Nassirli H
    J Ultrasound Med; 2011 Oct; 30(10):1321-9. PubMed ID: 21968482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-induced cavitation in plasmonic nanoparticle solutions: A comparative study between gold and titanium nitride.
    Sabzeghabae AN; Berrospe-Rodriguez C; Mangolini L; Aguilar G
    J Biomed Mater Res A; 2021 Dec; 109(12):2483-2492. PubMed ID: 34096159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods.
    Rajamma DB; Anandan S; Yusof NSM; Pollet BG; Ashokkumar M
    Ultrason Sonochem; 2021 Apr; 72():105413. PubMed ID: 33338865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Damping of acoustic vibrations of single gold nanoparticles optically trapped in water.
    Ruijgrok PV; Zijlstra P; Tchebotareva AL; Orrit M
    Nano Lett; 2012 Feb; 12(2):1063-9. PubMed ID: 22251064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions.
    Zhao W; Lin L; Hsing IM
    Langmuir; 2010 May; 26(10):7405-9. PubMed ID: 20180584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibacterial Effect of Acoustic Cavitation Promoted by Mesoporous Silicon Nanoparticles.
    Sviridov A; Mazina S; Ostapenko A; Nikolaev A; Timoshenko V
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel property of gold nanoparticles: Free radical generation under microwave irradiation.
    Paudel NR; Shvydka D; Parsai EI
    Med Phys; 2016 Apr; 43(4):1598. PubMed ID: 27036559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Damping of acoustic vibrations in gold nanoparticles.
    Pelton M; Sader JE; Burgin J; Liu M; Guyot-Sionnest P; Gosztola D
    Nat Nanotechnol; 2009 Aug; 4(8):492-5. PubMed ID: 19662009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving dispersion of nanometer-size diamond particles by acoustic cavitation.
    Uchida T; Hamano A; Kawashima N; Takeuchi S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e473-6. PubMed ID: 16781748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.
    Xu Z; Carlson C; Snell J; Eames M; Hananel A; Lopes MB; Raghavan P; Lee CC; Yen CP; Schlesinger D; Kassell NF; Aubry JF; Sheehan J
    J Neurosurg; 2015 Jan; 122(1):152-61. PubMed ID: 25380106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The decomposition of protoporphyrin IX by ultrasound is dependent on the generation of hydroxyl radicals.
    Xu H; Sun X; Yao J; Zhang J; Zhang Y; Chen H; Dan J; Tian Z; Tian Y
    Ultrason Sonochem; 2015 Nov; 27():623-630. PubMed ID: 25934126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. siRNA release from gold nanoparticles by nanosecond pulsed laser irradiation and analysis of the involved temperature increase.
    Rudnitzki F; Feineis S; Rahmanzadeh R; Endl E; Lutz J; Groll J; Hüttmann G
    J Biophotonics; 2018 Sep; 11(9):e201700329. PubMed ID: 29704320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects.
    Kamaev PP; Hutcheson JD; Wilson ML; Prausnitz MR
    J Acoust Soc Am; 2004 Apr; 115(4):1818-25. PubMed ID: 15101659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.