These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 27773271)
1. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields. Kauer M; Belova-Magri V; Cairós C; Schreier HJ; Mettin R Ultrason Sonochem; 2017 Jan; 34():474-483. PubMed ID: 27773271 [TBL] [Abstract][Full Text] [Related]
2. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178 [TBL] [Abstract][Full Text] [Related]
3. Influence of frequency sweep on sonochemiluminescence and sonoluminescence. Lee J; Hallez L; Touyeras F; Ashokkumar M; Hihn JY Ultrason Sonochem; 2020 Jun; 64():105047. PubMed ID: 32145517 [TBL] [Abstract][Full Text] [Related]
4. Multibubble Sonochemistry and Sonoluminescence at 100 kHz: The Missing Link between Low- and High-Frequency Ultrasound. Ji R; Pflieger R; Virot M; Nikitenko SI J Phys Chem B; 2018 Jul; 122(27):6989-6994. PubMed ID: 29889527 [TBL] [Abstract][Full Text] [Related]
5. Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies. Babgi B; Zhou M; Aksu M; Alghamdi Y; Ashokkumar M Ultrason Sonochem; 2016 Mar; 29():55-9. PubMed ID: 26584984 [TBL] [Abstract][Full Text] [Related]
6. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Cao H; Wan M; Qiao Y; Zhang S; Li R Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375 [TBL] [Abstract][Full Text] [Related]
7. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Liu HL; Hsieh CM Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening. Bai F; Long Y; Saalbach KA; Twiefel J Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727 [TBL] [Abstract][Full Text] [Related]
9. Axial acoustic field along a solid-liquid fluidized bed under power ultrasound. Grosjean V; Julcour C; Louisnard O; Barthe L Ultrason Sonochem; 2019 Sep; 56():274-283. PubMed ID: 31101263 [TBL] [Abstract][Full Text] [Related]
10. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique. Gielen B; Jordens J; Janssen J; Pfeiffer H; Wevers M; Thomassen LC; Braeken L; Van Gerven T Ultrason Sonochem; 2015 Jul; 25():31-9. PubMed ID: 25218768 [TBL] [Abstract][Full Text] [Related]
11. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU. Yin H; Qiao Y; Cao H; Li Z; Wan M Ultrason Sonochem; 2014 Mar; 21(2):559-65. PubMed ID: 24409464 [TBL] [Abstract][Full Text] [Related]
12. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Brotchie A; Grieser F; Ashokkumar M Phys Rev Lett; 2009 Feb; 102(8):084302. PubMed ID: 19257742 [TBL] [Abstract][Full Text] [Related]
13. The size of active bubbles for the production of hydrogen in sonochemical reaction field. Merouani S; Hamdaoui O Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777 [TBL] [Abstract][Full Text] [Related]
14. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields. Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075 [TBL] [Abstract][Full Text] [Related]
15. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps. Hallez L; Lee J; Touyeras F; Nevers A; Ashokkumar M; Hihn JY Ultrason Sonochem; 2016 Mar; 29():194-7. PubMed ID: 26584998 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Servant G; Caltagirone JP; Gérard A; Laborde JL; Hita A Ultrason Sonochem; 2000 Oct; 7(4):217-27. PubMed ID: 11062879 [TBL] [Abstract][Full Text] [Related]
17. Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor. Gielen B; Marchal S; Jordens J; Thomassen LC; Braeken L; Van Gerven T Ultrason Sonochem; 2016 Jul; 31():463-72. PubMed ID: 26964973 [TBL] [Abstract][Full Text] [Related]
18. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Thiemann A; Holsteyns F; Cairós C; Mettin R Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293 [TBL] [Abstract][Full Text] [Related]
19. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit. Izadifar Z; Belev G; Babyn P; Chapman D Biomed Eng Online; 2015 Oct; 14():91. PubMed ID: 26481447 [TBL] [Abstract][Full Text] [Related]
20. A method for predicting the number of active bubbles in sonochemical reactors. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]