These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27773292)

  • 21. Characterisation of flow behaviour and velocity induced by ultrasound using particle image velocimetry (PIV): Effect of fluid rheology, acoustic intensity and transducer tip size.
    O'Sullivan JJ; Espinoza CJU; Mihailova O; Alberini F
    Ultrason Sonochem; 2018 Nov; 48():218-230. PubMed ID: 30080545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavitation-induced shock wave behaviour in different liquids.
    Khavari M; Priyadarshi A; Morton J; Porfyrakis K; Pericleous K; Eskin D; Tzanakis I
    Ultrason Sonochem; 2023 Mar; 94():106328. PubMed ID: 36801674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.
    Žnidarčič A; Mettin R; Dular M
    Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation.
    Beckwith C; Djambazov G; Pericleous K; Tonry C
    Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field.
    Ma X; Huang B; Wang G; Zhang M
    Ultrason Sonochem; 2017 Jan; 34():164-172. PubMed ID: 27773232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for measuring acoustic power of an ultrasonic neurosurgical device.
    Petosić A; Ivancević B; Svilar D; Stimac T; Paladino J; Oresković D; Jurjević I; Klarica M
    Coll Antropol; 2011 Jan; 35 Suppl 1():107-13. PubMed ID: 21648319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.
    Bai F; Long Y; Saalbach KA; Twiefel J
    Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the liquid viscosity on the formation of bubble structures in a 20kHz field.
    Salinas V; Vargas Y; Louisnard O; Gaete L
    Ultrason Sonochem; 2015 Jan; 22():227-34. PubMed ID: 25082762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid jet directionality and droplet behavior during emulsification of two liquids due to acoustic cavitation.
    Yamamoto T; Komarov SV
    Ultrason Sonochem; 2020 Apr; 62():104874. PubMed ID: 31810876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring viscosity influence mechanisms on coating removal: Insights from single cavitation bubble behaviours in low-frequency ultrasonic settings.
    Wu H; Jin Y; Li Y; Zheng H; Lai X; Ma J; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2024 Mar; 104():106810. PubMed ID: 38377804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process.
    Guo C; Zhu X
    Ultrasonics; 2018 Mar; 84():13-24. PubMed ID: 29073483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.
    Tzanakis I; Eskin DG; Georgoulas A; Fytanidis DK
    Ultrason Sonochem; 2014 Mar; 21(2):866-78. PubMed ID: 24176799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.
    Xu WW; Tzanakis I; Srirangam P; Mirihanage WU; Eskin DG; Bodey AJ; Lee PD
    Ultrason Sonochem; 2016 Jul; 31():355-61. PubMed ID: 26964960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bubble dynamics and cavitation intensity in milli-scale channels under an ultrasonic horn.
    Tan KL; Yeo SH
    Ultrason Sonochem; 2019 Nov; 58():104666. PubMed ID: 31450291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the acoustic cavitation in ionic liquids in a horn-type ultrasound reactor.
    Schieppati D; Mohan M; Blais B; Fattahi K; Patience GS; Simmons BA; Singh S; Boffito DC
    Ultrason Sonochem; 2024 Jan; 102():106721. PubMed ID: 38103370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed observation of acoustic cavitation erosion in multibubble systems.
    Krefting D; Mettin R; Lauterborn W
    Ultrason Sonochem; 2004 May; 11(3-4):119-23. PubMed ID: 15081967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.