These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27773362)

  • 1. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.
    Rossi MM; Alderson J; El-Sallam A; Dowling J; Reinbolt J; Donnelly CJ
    J Biomech; 2016 Dec; 49(16):4119-4123. PubMed ID: 27773362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical and principal axes are not aligned in the torso: Considerations for users of geometric modelling methods.
    Choppin S; Clarkson S; Bullas A; Thelwell M; Heller B; Wheat J
    J Biomech; 2021 Jan; 114():110151. PubMed ID: 33307355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.
    Kim DS; Choi SC; Lee SS; Heo MS; Huh KH; Hwang SJ; Kim SH; Yi WJ
    Comput Biol Med; 2013 Mar; 43(3):169-75. PubMed ID: 23321156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of inertial parameters using a dynamometer.
    Son J; Ryu J; Kim J; Kim Y
    Biomed Mater Eng; 2014; 24(6):2447-55. PubMed ID: 25226945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.
    Hansen C; Venture G; Rezzoug N; Gorce P; Isableu B
    J Biomech; 2014 May; 47(7):1577-81. PubMed ID: 24704168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of segment principal moments of inertia between four and twenty years.
    Jensen RK; Nassas G
    Med Sci Sports Exerc; 1988 Dec; 20(6):594-604. PubMed ID: 3070258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is perception of upper body orientation based on the inertia tensor? Normogravity versus microgravity conditions.
    Gueguen N; Coyle T; Craig C; Bootsma R; Mouchnino L
    Exp Brain Res; 2004 Jun; 156(4):471-7. PubMed ID: 14968277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segment inertial properties of Chinese adults determined from magnetic resonance imaging.
    Cheng CK; Chen HH; Chen CS; Chen CL; Chen CY
    Clin Biomech (Bristol, Avon); 2000 Oct; 15(8):559-66. PubMed ID: 10936427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.
    Zhang Y; Yin FF; Segars WP; Ren L
    Med Phys; 2013 Dec; 40(12):121701. PubMed ID: 24320487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustments to McConville et al. and Young et al. body segment inertial parameters.
    Dumas R; Chèze L; Verriest JP
    J Biomech; 2007; 40(3):543-53. PubMed ID: 16616757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro validation of inertial-sensor-to-bone alignment.
    Weygers I; Kok M; Seel T; Shah D; Taylan O; Scheys L; Hallez H; Claeys K
    J Biomech; 2021 Nov; 128():110781. PubMed ID: 34628197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of non-twisting somersaults using configuration changes.
    Yeadon MR; Mikulcik EC
    J Biomech; 1996 Oct; 29(10):1341-8. PubMed ID: 8884479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity-dependent changes of rotational axes during the control of unconstrained 3D arm motions depend on initial instruction on limb position.
    Isableu B; Hansen C; Rezzoug N; Gorce P; Pagano CC
    Hum Mov Sci; 2013 Apr; 32(2):290-300. PubMed ID: 23725828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the Measurement Technology of Rotational Inertia of Rigid Body Based on the Principles of Monocular Vision and Torsion Pendulum.
    Chen Y; Zeng Y; Li H; Zhang J; Zhang L
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The simulation of aerial movement--IV. A computer simulation model.
    Yeadon MR; Atha J; Hales FD
    J Biomech; 1990; 23(1):85-9. PubMed ID: 2307695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of whole-body human centers of gravity and moments of inertia.
    Albery CB; Schultz RB; Bjorn VS
    SAFE J; 1998 Jun; 28(2):78-88. PubMed ID: 11542768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.