BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27773440)

  • 1. A simple model to predict chromate partitioning in selected soils from China.
    Gu X; Xie J; Wang X; Evans LJ
    J Hazard Mater; 2017 Jan; 322(Pt B):421-429. PubMed ID: 27773440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface.
    Xie J; Gu X; Tong F; Zhao Y; Tan Y
    J Colloid Interface Sci; 2015 Oct; 455():55-62. PubMed ID: 26057103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Cr(vi) adsorption on soils: the role of the competition of soil organic matter.
    Shi Z; Peng S; Lin X; Liang Y; Lee SZ; Allen HE
    Environ Sci Process Impacts; 2020 Jan; 22(1):95-104. PubMed ID: 31897461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation.
    Veselská V; Fajgar R; Číhalová S; Bolanz RM; Göttlicher J; Steininger R; Siddique JA; Komárek M
    J Hazard Mater; 2016 Nov; 318():433-442. PubMed ID: 27450335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of iron (hydr)oxides and Cr(VI) retention mechanisms in soils from tropical and subtropical areas of China.
    Wang W; Yang L; Gao D; Yu M; Jiang S; Li J; Zhang J; Feng X; Tan W; Liu F; Yin M; Yin H
    J Hazard Mater; 2024 Mar; 465():133107. PubMed ID: 38043424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China.
    Dong D; Zhao X; Hua X; Liu J; Gao M
    J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ferrolysis and organic matter accumulation on chromate adsorption characteristics of an Oxisol-derived paddy soil.
    Hua H; Zhao Z; Xu R; Chang E; Fang D; Dong Y; Hong Z; Shi R; Jiang J
    Sci Total Environ; 2020 Nov; 744():140868. PubMed ID: 32717467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of Cr(III) on birnessite surfaces: The effect of goethite and kaolinite.
    Zhong L; Yang J; Liu L; Xing B
    J Environ Sci (China); 2015 Nov; 37():8-14. PubMed ID: 26574083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-scale assessment of the impact of salinity on the desorption of chromate from hematite: Sea level rise implications.
    Barreto MSC; Elzinga EJ; Kubicki JD; Sparks DL
    J Hazard Mater; 2024 Mar; 465():133041. PubMed ID: 38043423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.
    Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R
    J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp. strain ES6.
    Viamajala S; Peyton BM; Gerlach R; Sivaswamy V; Apel WA; Petersen JN
    Biotechnol Bioeng; 2008 Dec; 101(6):1150-62. PubMed ID: 18683257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties.
    Xiao W; Zhang Y; Li T; Chen B; Wang H; He Z; Yang X
    J Environ Qual; 2012; 41(5):1452-8. PubMed ID: 23099936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface complexation modeling of Hg(II) adsorption at the goethite/water interface using the charge distribution multi-site complexation (CD-MUSIC) model.
    Mangold JE; Park CM; Liljestrand HM; Katz LE
    J Colloid Interface Sci; 2014 Mar; 418():147-61. PubMed ID: 24461830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of carboxylic acid and ester groups on chromium (VI) binding to functionalized silica/water interfaces studied by second harmonic generation.
    Al-Abadleh HA; Mifflin AL; Bertin PA; Nguyen ST; Geiger FM
    J Phys Chem B; 2005 May; 109(19):9691-702. PubMed ID: 16852168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.