These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27773522)

  • 21. Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.
    Numata T; Inanaga H; Sato C; Osawa T
    J Mol Biol; 2015 Jan; 427(2):259-73. PubMed ID: 25451598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
    Majumdar S; Ligon M; Skinner WC; Terns RM; Terns MP
    Extremophiles; 2017 Jan; 21(1):95-107. PubMed ID: 27582008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.
    Han W; Li Y; Deng L; Feng M; Peng W; Hallstrøm S; Zhang J; Peng N; Liang YX; White MF; She Q
    Nucleic Acids Res; 2017 Feb; 45(4):1983-1993. PubMed ID: 27986854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
    Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA
    J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System.
    Burmistrz M; Rodriguez Martinez JI; Krochmal D; Staniec D; Pyrc K
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28893837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity.
    Rostøl JT; Marraffini LA
    Nat Microbiol; 2019 Apr; 4(4):656-662. PubMed ID: 30692669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM.
    Dorsey BW; Huang L; Mondragón A
    Nucleic Acids Res; 2019 Apr; 47(7):3765-3783. PubMed ID: 30759237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering, Communicating, and Engineering the CRISPR PAM.
    Leenay RT; Beisel CL
    J Mol Biol; 2017 Jan; 429(2):177-191. PubMed ID: 27916599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems.
    Giovannangeli C; Concordet JP
    Methods; 2014 Sep; 69(2):119-20. PubMed ID: 25248487
    [No Abstract]   [Full Text] [Related]  

  • 30. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro assembly of thermostable Csm complex in CRISPR-Cas type III/A system.
    Park KH; An Y; Woo EJ
    Methods Enzymol; 2019; 616():173-189. PubMed ID: 30691642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling of ssRNA cleavage with DNase activity in type III-A CRISPR-Csm revealed by cryo-EM and biochemistry.
    Guo M; Zhang K; Zhu Y; Pintilie GD; Guan X; Li S; Schmid MF; Ma Z; Chiu W; Huang Z
    Cell Res; 2019 Apr; 29(4):305-312. PubMed ID: 30814678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron microscopy studies of Type III CRISPR machines in Sulfolobus solfataricus.
    Cannone G; Webber-Birungi M; Spagnolo L
    Biochem Soc Trans; 2013 Dec; 41(6):1427-30. PubMed ID: 24256232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.
    Sokolowski RD; Graham S; White MF
    Nucleic Acids Res; 2014 Jun; 42(10):6532-41. PubMed ID: 24753403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system.
    Pan S; Li Q; Deng L; Jiang S; Jin X; Peng N; Liang Y; She Q; Li Y
    RNA Biol; 2019 Sep; 16(9):1166-1178. PubMed ID: 31096876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.
    Hrle A; Maier LK; Sharma K; Ebert J; Basquin C; Urlaub H; Marchfelder A; Conti E
    RNA Biol; 2014; 11(8):1072-82. PubMed ID: 25483036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
    Hale CR; Cocozaki A; Li H; Terns RM; Terns MP
    Genes Dev; 2014 Nov; 28(21):2432-43. PubMed ID: 25367038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
    Zhang J; White MF
    Biochem Soc Trans; 2013 Dec; 41(6):1422-6. PubMed ID: 24256231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.