These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2777368)
1. Characterization of the macrophage subset affected and its response to a T suppressor factor (TsFmp) found in cryptococcosis. Blackstock R; Hernandez NC Infect Immun; 1989 Oct; 57(10):2931-7. PubMed ID: 2777368 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a suppressor factor that regulates phagocytosis by macrophages in murine cryptococcosis. Blackstock R; Hall NK; Hernandez NC Infect Immun; 1989 Jun; 57(6):1773-9. PubMed ID: 2656522 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of macrophage phagocytosis in cryptococcosis: phenotypic analysis of the suppressor cell. Blackstock R; Hernandez NC Cell Immunol; 1988 Jun; 114(1):174-87. PubMed ID: 3259473 [TBL] [Abstract][Full Text] [Related]
4. Functional equivalence of cryptococcal and haptene-specific T suppressor factor (TsF). I. Picryl and oxazolone-specific TsF, which inhibit transfer of contact sensitivity, also inhibit phagocytosis by a subset of macrophages. Blackstock R; Zembala M; Asherson GL Cell Immunol; 1991 Sep; 136(2):435-47. PubMed ID: 1873826 [TBL] [Abstract][Full Text] [Related]
5. Modification of macrophage phagocytosis in murine cryptococcosis. Morgan MA; Blackstock RA; Bulmer GS; Hall NK Infect Immun; 1983 May; 40(2):493-500. PubMed ID: 6220973 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of cloned macrophage hybridomas. VII. Modulation of suppressor T cell-inducing activity. Ishikura H; Jayaraman S; Kuchroo V; Diamond B; Saito S; Dorf ME J Immunol; 1989 Jul; 143(2):414-9. PubMed ID: 2525585 [TBL] [Abstract][Full Text] [Related]
7. Immunosuppression in experimental cryptococcosis in rats: modification of macrophage functions by T suppressor cells. Macrophages functions in cryptococcosis. Rubinstein HR; Sotomayor CE; Cervi LA; Riera CM; Masih DT Mycopathologia; 1989 Oct; 108(1):11-9. PubMed ID: 2533323 [TBL] [Abstract][Full Text] [Related]
8. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Collins HL; Bancroft GJ Eur J Immunol; 1992 Jun; 22(6):1447-54. PubMed ID: 1601035 [TBL] [Abstract][Full Text] [Related]
9. Induction of a macrophage-suppressive lymphokine by soluble cryptococcal antigens and its association with models of immunologic tolerance. Blackstock R; McCormack JM; Hall NK Infect Immun; 1987 Jan; 55(1):233-9. PubMed ID: 2947863 [TBL] [Abstract][Full Text] [Related]
10. Acquisition of repertoires of suppressor T cells under the influence of macrophages. Soejima T; Nagayama A; Sado T; Taniguchi M J Mol Cell Immunol; 1988; 4(2):87-95. PubMed ID: 2855588 [TBL] [Abstract][Full Text] [Related]
11. Requirements for suppressor cell activation. Role of accessory cells. Kuchroo VK; Minami M; Diamond B; Dorf ME J Immunol; 1989 Apr; 142(7):2192-9. PubMed ID: 2522479 [TBL] [Abstract][Full Text] [Related]
13. Immunomodulatory activity of staphylococcal enterotoxin-B. The induction of an I-J-restricted suppressor factor. Taub DD; Lin YS; Hu SC; Rogers TJ J Immunol; 1989 Aug; 143(3):813-20. PubMed ID: 2473112 [TBL] [Abstract][Full Text] [Related]
14. Regulation of granulomatous inflammation in murine schistosomiasis. III. Recruitment of antigen-specific I-J+ T suppressor cells of the granulomatous response by I-J+ soluble suppressor factor. Mathew RC; Boros DL J Immunol; 1986 Feb; 136(3):1093-9. PubMed ID: 2416827 [TBL] [Abstract][Full Text] [Related]
15. Increased susceptibility against Cryptococcus neoformans of lupus mouse models (pristane-induction and FcGRIIb deficiency) is associated with activated macrophage, regardless of genetic background. Surawut S; Makjaroen J; Thim-Uam A; Wongphoom J; Palaga T; Pisitkun P; Chindamporn A; Leelahavanichkul A J Microbiol; 2019 Jan; 57(1):45-53. PubMed ID: 30456753 [TBL] [Abstract][Full Text] [Related]
16. Bacterial antigen delivery systems: phagocytic processing of bacterial antigens for MHC-I and MHC-II presentation to T cells. Svensson M; Pfeifer J; Stockinger B; Wick MJ Behring Inst Mitt; 1997 Feb; (98):197-211. PubMed ID: 9382741 [TBL] [Abstract][Full Text] [Related]
17. Membrane changes in murine macrophages after in-vivo stimulation and activation. Glass EJ; Stewart J; Weir DM Immunology; 1983 Sep; 50(1):165-73. PubMed ID: 6350168 [TBL] [Abstract][Full Text] [Related]
18. Nonspecific T suppressor factor (nsTsF) cascade in contact sensitivity: nsTsF-1 causes an Ly-1+2- I-A+ immune T cell to produce a second, genetically restricted, nsTsF-2. Zembala M; Romano GC; Colizzi V; Little JA; Asherson GL J Immunol; 1986 Aug; 137(4):1138-43. PubMed ID: 2426353 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of macrophage Fc-dependent phagocytosis by resident thymocytes: effect of a unique heat-stable lymphokine. Coleman DL; Root RK; Ryan JL J Immunol; 1983 May; 130(5):2195-9. PubMed ID: 6339624 [TBL] [Abstract][Full Text] [Related]
20. Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages. Griffin FM; Griffin JA J Immunol; 1980 Aug; 125(2):844-9. PubMed ID: 7391581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]