BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27774602)

  • 21. Site fidelity and homing in tropical coral reef cardinalfish: are they using olfactory cues?
    Døving KB; Stabell OB; Ostlund-Nilsson S; Fisher R
    Chem Senses; 2006 Mar; 31(3):265-72. PubMed ID: 16436688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive morphological shifts to novel habitats in marine sculpin fishes.
    Knope ML; Scales JA
    J Evol Biol; 2013 Mar; 26(3):472-82. PubMed ID: 23316868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Movement patterns of the parrotfish Sparisoma cretense in a Mediterranean marine protected area.
    La Mesa G; Consalvo I; Annunziatellis A; Canese S
    Mar Environ Res; 2012 Dec; 82():59-68. PubMed ID: 23069664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Many places called home: the adaptive value of seasonal adjustments in range fidelity.
    Lafontaine A; Drapeau P; Fortin D; St-Laurent MH
    J Anim Ecol; 2017 May; 86(3):624-633. PubMed ID: 28146328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Movement patterns, habitat use and site fidelity of the white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los Angeles, California.
    Wolfe BW; Lowe CG
    Mar Environ Res; 2015 Aug; 109():69-80. PubMed ID: 26107933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey.
    Spice EK; Goodman DH; Reid SB; Docker MF
    Mol Ecol; 2012 Jun; 21(12):2916-30. PubMed ID: 22564149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Movements of blue rockfish (Sebastes mystinus) off central California with comparisons to similar species.
    Green KM; Greenley AP; Starr RM
    PLoS One; 2014; 9(6):e98976. PubMed ID: 24902049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-range homing in a site-specific fish: search and directed movements.
    Mitamura H; Uchida K; Miyamoto Y; Kakihara T; Miyagi A; Kawabata Y; Ichikawa K; Arai N
    J Exp Biol; 2012 Aug; 215(Pt 16):2751-9. PubMed ID: 22837447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The response of the tidepool sculpin, Oligocottus maculosus, to hypoxia in laboratory, mesocosm and field environments.
    Sloman KA; Mandic M; Todgham AE; Fangue NA; Subrt P; Richards JG
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Mar; 149(3):284-92. PubMed ID: 18276177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Movements of Diplodus sargus (Sparidae) within a Portuguese coastal Marine Protected Area: Are they really protected?
    Belo AF; Pereira TJ; Quintella BR; Castro N; Costa JL; de Almeida PR
    Mar Environ Res; 2016 Mar; 114():80-94. PubMed ID: 26794495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators.
    Gravem SA; Morgan SG
    Ecology; 2017 Apr; 98(4):1006-1015. PubMed ID: 27935647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of spatial niche structure in coexisting tidepool fishes: null models based on multi-scale experiments.
    Arakaki S; Tokeshi M
    J Anim Ecol; 2011 Jan; 80(1):137-47. PubMed ID: 20796205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ranging and site fidelity in northern pigtailed macaques (Macaca leonina) over different temporal scales.
    José-Domínguez JM; Savini T; Asensio N
    Am J Primatol; 2015 Aug; 77(8):841-53. PubMed ID: 25864438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site fidelity, size, and morphology may differ by tidal position for an intertidal fish, Bathygobius cocosensis (Perciformes-Gobiidae), in Eastern Australia.
    Malard LA; McGuigan K; Riginos C
    PeerJ; 2016; 4():e2263. PubMed ID: 27547568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetics of the marine sculpins (Teleostei: Cottidae) of the North American Pacific Coast.
    Knope ML
    Mol Phylogenet Evol; 2013 Jan; 66(1):341-9. PubMed ID: 23099148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The integration of locomotion and prey capture in divergent cottid fishes: functional disparity despite morphological similarity.
    Kane EA; Higham TE
    J Exp Biol; 2011 Apr; 214(Pt 7):1092-9. PubMed ID: 21389193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating in situ habitat patchiness in site selection models reveals that site fidelity is not always a consequence of animal choice.
    Martinez AS; Queiroz EV; Bryson M; Byrne M; Coleman RA
    J Anim Ecol; 2017 Jul; 86(4):847-856. PubMed ID: 28342281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitellogenin gene expression in the intertidal blenny Lipophrys pholis: a new sentinel species for estrogenic chemical pollution monitoring in the European Atlantic coast?
    Ferreira F; Santos MM; Castro LF; Reis-Henriques MA; Lima D; Vieira MN; Monteiro NM
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):58-64. PubMed ID: 18672093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular support for marine sculpin (Cottidae; Oligocottinae) diversification during the transition from the subtidal to intertidal habitat in the Northeastern Pacific Ocean.
    Ramon ML; Knope ML
    Mol Phylogenet Evol; 2008 Feb; 46(2):475-83. PubMed ID: 18248743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes.
    Neville HM; Isaak DJ; Dunham JB; Thurow RF; Rieman BE
    Mol Ecol; 2006 Dec; 15(14):4589-602. PubMed ID: 17107485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.