These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 27775003)

  • 1. Rayleigh scattering in few-mode optical fibers.
    Wang Z; Wu H; Hu X; Zhao N; Mo Q; Li G
    Sci Rep; 2016 Oct; 6():35844. PubMed ID: 27775003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurement of mode dependent loss and mode coupling in few mode fibers by analyzing the Rayleigh backscattering amplitudes.
    Liu F; Hu G; Song C; Chen W; Chen C; Chen J
    Appl Opt; 2018 Oct; 57(30):8894-8902. PubMed ID: 30461876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.
    Weng Y; Ip E; Pan Z; Wang T
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27589754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-service crosstalk monitoring, tracing and lightpath re-optimization for space-division multiplexing optical networks.
    Luo R; Hua N; Yu Y; Jin Y; Zheng X; Zhou B
    Opt Express; 2017 Nov; 25(24):30428-30444. PubMed ID: 29221072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-mode fiber based Raman distributed temperature sensing.
    Wang M; Wu H; Tang M; Zhao Z; Dang Y; Zhao C; Liao R; Chen W; Fu S; Yang C; Tong W; Shum PP; Liu D
    Opt Express; 2017 Mar; 25(5):4907-4916. PubMed ID: 28380758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Analysis of Scattering-Level Multiplexing (SLMux) in Distributed Fiber-Optic Backscatter Reflectometry Physical Sensors.
    Tosi D; Molardi C; Blanc W; Paixão T; Antunes P; Marques C
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Few-mode fiber based optical sensors.
    Li A; Wang Y; Hu Q; Shieh W
    Opt Express; 2015 Jan; 23(2):1139-50. PubMed ID: 25835874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-based OTDR with dynamic modal crosstalk suppression.
    Takahashi H; Toge K; Oda T; Manabe T
    Opt Express; 2019 Jan; 27(2):783-791. PubMed ID: 30696159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers.
    Yaman F; Bai N; Huang YK; Huang MF; Zhu B; Wang T; Li G
    Opt Express; 2010 Sep; 18(20):21342-9. PubMed ID: 20941030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold for stimulated Brillouin scattering in few-mode fibers.
    Chen W; Hu G; Liu F; Wang F; Song C; Li X; Yu Y
    Appl Opt; 2019 May; 58(15):4105-4110. PubMed ID: 31158166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending losses of trench-assisted few-mode optical fibers.
    Zheng X; Ren G; Huang L; Li H; Zhu B; Zheng H; Cao M
    Appl Opt; 2016 Apr; 55(10):2639-48. PubMed ID: 27139667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of all-optical MDM/WDM switching for short-reach networks.
    Wu Z; Li J; Ge D; Ren F; Zhu P; Mo Q; Li Z; Chen Z; He Y
    Opt Express; 2016 Sep; 24(19):21609-18. PubMed ID: 27661899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers.
    Dong H; Zhang H; Hu DJJ
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long distance transmission in few-mode fibers.
    Yaman F; Bai N; Zhu B; Wang T; Li G
    Opt Express; 2010 Jun; 18(12):13250-7. PubMed ID: 20588454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated thermal Rayleigh scattering in optical fibers.
    Dong L
    Opt Express; 2013 Feb; 21(3):2642-56. PubMed ID: 23481720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF.
    Tian Y; Li J; Wu Z; Chen Y; Zhu P; Tang R; Mo Q; He Y; Chen Z
    Opt Express; 2017 Jul; 25(14):16603-16617. PubMed ID: 28789162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers.
    Fuertes V; Grégoire N; Labranche P; Gagnon S; Wang R; Ledemi Y; LaRochelle S; Messaddeq Y
    Sci Rep; 2021 Apr; 11(1):9116. PubMed ID: 33907246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise.
    Fleyer M; Heerschap S; Cranch GA; Horowitz M
    Opt Lett; 2016 Mar; 41(6):1265-8. PubMed ID: 26977685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning aided inverse design for few-mode fiber weak-coupling optimization.
    He Z; Du J; Chen X; Shen W; Huang Y; Wang C; Xu K; He Z
    Opt Express; 2020 Jul; 28(15):21668-21681. PubMed ID: 32752440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers.
    Wen J; Peng GD; Luo W; Xiao Z; Chen Z; Wang T
    Opt Express; 2011 Nov; 19(23):23271-8. PubMed ID: 22109205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.