These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27775003)

  • 21. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.
    Bisyarin MA; Kotov OI; Hartog AH; Liokumovich LB; Ushakov NA
    Appl Opt; 2017 Jun; 56(16):4629-4635. PubMed ID: 29047593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributed vibration sensor based on mode coupling in weakly coupled few-mode fibers.
    Jia J; Cui J; Zhang J; Zuo M; Gao Y; Chen Z; He Y; Li J
    Opt Lett; 2022 Apr; 47(7):1717-1720. PubMed ID: 35363716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geometric requirements for photonic lanterns in space division multiplexing.
    Fontaine NK; Ryf R; Bland-Hawthorn J; Leon-Saval SG
    Opt Express; 2012 Nov; 20(24):27123-32. PubMed ID: 23187568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surveillance of few-mode fiber-communication channels with a single hidden layer neural network.
    Pohle D; Rothe S; Koukourakis N; Czarske J
    Opt Lett; 2022 Mar; 47(5):1275-1278. PubMed ID: 35230345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic loss of few-mode fibers.
    Liu Y; Yang Z; Zhao J; Zhang L; Li Z; Li G
    Opt Express; 2018 Jan; 26(2):2107-2116. PubMed ID: 29401935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives of principal mode transmission in mode-division-multiplex operation.
    Juarez AA; Bunge CA; Warm S; Petermann K
    Opt Express; 2012 Jun; 20(13):13810-23. PubMed ID: 22714446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive model for studying noise induced by self-homodyne detection of backward Rayleigh scattering in optical fibers.
    Fleyer M; Cahill JP; Horowitz M; Menyuk CR; Okusaga O
    Opt Express; 2015 Oct; 23(20):25635-52. PubMed ID: 26480080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.
    Yan A; Huang S; Li S; Chen R; Ohodnicki P; Buric M; Lee S; Li MJ; Chen KP
    Sci Rep; 2017 Aug; 7(1):9360. PubMed ID: 28839282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-fiber few-mode multicore photonic lantern mode multiplexer.
    Eznaveh ZS; Antonio-Lopez JE; Zacarias JCA; Schülzgen A; Okonkwo CM; Correa RA
    Opt Express; 2017 Jul; 25(14):16701-16707. PubMed ID: 28789171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Guided entropy mode Rayleigh scattering in optical fibers.
    Okusaga O; Cahill J; Docherty A; Zhou W; Menyuk CR
    Opt Lett; 2012 Feb; 37(4):683-5. PubMed ID: 22344147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of modal evolution fluctuation in 2-LP mode optical time domain reflectometry.
    Nakamura A; Koshikiya Y; Manabe T
    Opt Express; 2017 Aug; 25(17):20727-20736. PubMed ID: 29041751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superlinear growth of Rayleigh scattering-induced intensity noise in single-mode fibers.
    Cahill JP; Okusaga O; Zhou W; Menyuk CR; Carter GM
    Opt Express; 2015 Mar; 23(5):6400-7. PubMed ID: 25836860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing.
    Wang L; LaRochelle S
    Opt Lett; 2015 Dec; 40(24):5846-9. PubMed ID: 26670527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window.
    Qiu Y; Xu J; Wong KK; Tsia KK
    Opt Express; 2012 Oct; 20(22):24115-23. PubMed ID: 23187174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission of wireless signals using space division multiplexing in few mode fibers.
    Liang X; Li WL; Wood WA; Downie JD; Hurley JE; Ng'oma A
    Opt Express; 2018 Aug; 26(16):20507-20518. PubMed ID: 30119360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous-variable quantum key distribution coexisting with classical signals on few-mode fiber.
    Zhong H; Zou S; Huang D; Guo Y
    Opt Express; 2021 May; 29(10):14486-14504. PubMed ID: 33985171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rayleigh scattering optical frequency correlation in a single-mode optical fiber.
    Mermelstein MD; Posey R; Johnson GA; Vohra ST
    Opt Lett; 2001 Jan; 26(2):58-60. PubMed ID: 18033505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber.
    Wang A; Zhu L; Chen S; Du C; Mo Q; Wang J
    Opt Express; 2016 May; 24(11):11716-26. PubMed ID: 27410097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing.
    Le Cocq G; Bigot L; Le Rouge A; Bigot-Astruc M; Sillard P; Koebele C; Salsi M; Quiquempois Y
    Opt Express; 2012 Nov; 20(24):27051-61. PubMed ID: 23187561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Random fiber laser based on artificially controlled backscattering fibers.
    Wang X; Chen D; Li H; She L; Wu Q
    Appl Opt; 2018 Jan; 57(2):258-262. PubMed ID: 29328173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.