BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 27775177)

  • 1. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis.
    Inturi B; Pujar GV; Purohit MN
    Arch Pharm (Weinheim); 2016 Nov; 349(11):817-826. PubMed ID: 27775177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis.
    Luckner SR; Liu N; am Ende CW; Tonge PJ; Kisker C
    J Biol Chem; 2010 May; 285(19):14330-7. PubMed ID: 20200152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance.
    Rawat R; Whitty A; Tonge PJ
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in the identification and development of InhA direct inhibitors of Mycobacterium tuberculosis.
    Lu XY; You QD; Chen YD
    Mini Rev Med Chem; 2010 Mar; 10(3):181-92. PubMed ID: 20408801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow-onset inhibition of 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex.
    Oliveira JS; de Sousa EH; de Souza ON; Moreira IS; Santos DS; Basso LA
    Curr Pharm Des; 2006; 12(19):2409-24. PubMed ID: 16842188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct inhibitors of InhA are active against Mycobacterium tuberculosis.
    Manjunatha UH; S Rao SP; Kondreddi RR; Noble CG; Camacho LR; Tan BH; Ng SH; Ng PS; Ma NL; Lakshminarayana SB; Herve M; Barnes SW; Yu W; Kuhen K; Blasco F; Beer D; Walker JR; Tonge PJ; Glynne R; Smith PW; Diagana TT
    Sci Transl Med; 2015 Jan; 7(269):269ra3. PubMed ID: 25568071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of InhA inhibitors in the class of diphenyl ether derivatives as potential anti-tubercular agents using molecular dynamics simulations.
    Kamsri P; Koohatammakun N; Srisupan A; Meewong P; Punkvang A; Saparpakorn P; Hannongbua S; Wolschann P; Prueksaaroon S; Leartsakulpanich U; Pungpo P
    SAR QSAR Environ Res; 2014; 25(6):473-88. PubMed ID: 24785640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis.
    Sullivan TJ; Truglio JJ; Boyne ME; Novichenok P; Zhang X; Stratton CF; Li HJ; Kaur T; Amin A; Johnson F; Slayden RA; Kisker C; Tonge PJ
    ACS Chem Biol; 2006 Feb; 1(1):43-53. PubMed ID: 17163639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA.
    Perryman AL; Yu W; Wang X; Ekins S; Forli S; Li SG; Freundlich JS; Tonge PJ; Olson AJ
    J Chem Inf Model; 2015 Mar; 55(3):645-59. PubMed ID: 25636146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides.
    He X; Alian A; Ortiz de Montellano PR
    Bioorg Med Chem; 2007 Nov; 15(21):6649-58. PubMed ID: 17723305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.
    Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS
    J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach.
    Subba Rao G; Vijayakrishnan R; Kumar M
    Chem Biol Drug Des; 2008 Nov; 72(5):444-9. PubMed ID: 19012578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis.
    Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ
    Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis.
    Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS
    J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity.
    Guardia A; Gulten G; Fernandez R; Gómez J; Wang F; Convery M; Blanco D; Martínez M; Pérez-Herrán E; Alonso M; Ortega F; Rullás J; Calvo D; Mata L; Young R; Sacchettini JC; Mendoza-Losana A; Remuiñán M; Ballell Pages L; Castro-Pichel J
    ChemMedChem; 2016 Apr; 11(7):687-701. PubMed ID: 26934341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA.
    Encinas L; O'Keefe H; Neu M; Remuiñán MJ; Patel AM; Guardia A; Davie CP; Pérez-Macías N; Yang H; Convery MA; Messer JA; Pérez-Herrán E; Centrella PA; Alvarez-Gómez D; Clark MA; Huss S; O'Donovan GK; Ortega-Muro F; McDowell W; Castañeda P; Arico-Muendel CC; Pajk S; Rullás J; Angulo-Barturen I; Alvarez-Ruíz E; Mendoza-Losana A; Ballell Pages L; Castro-Pichel J; Evindar G
    J Med Chem; 2014 Feb; 57(4):1276-88. PubMed ID: 24450589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study.
    da Costa AL; Pauli I; Dorn M; Schroeder EK; Zhan CG; de Souza ON
    J Mol Model; 2012 May; 18(5):1779-90. PubMed ID: 21833828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.
    Matviiuk T; Rodriguez F; Saffon N; Mallet-Ladeira S; Gorichko M; de Jesus Lopes Ribeiro AL; Pasca MR; Lherbet C; Voitenko Z; Baltas M
    Eur J Med Chem; 2013; 70():37-48. PubMed ID: 24140915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology.
    Soutter HH; Centrella P; Clark MA; Cuozzo JW; Dumelin CE; Guie MA; Habeshian S; Keefe AD; Kennedy KM; Sigel EA; Troast DM; Zhang Y; Ferguson AD; Davies G; Stead ER; Breed J; Madhavapeddi P; Read JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7880-E7889. PubMed ID: 27864515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives.
    Armstrong T; Lamont M; Lanne A; Alderwick LJ; Thomas NR
    Bioorg Med Chem; 2020 Nov; 28(22):115744. PubMed ID: 33007556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.