BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 27775321)

  • 1. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna.
    Mårsell E; Losquin A; Svärd R; Miranda M; Guo C; Harth A; Lorek E; Mauritsson J; Arnold CL; Xu H; L'Huillier A; Mikkelsen A
    Nano Lett; 2015 Oct; 15(10):6601-8. PubMed ID: 26375959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field spectral properties of coupled plasmonic nanoparticle arrays.
    Yu H; Sun Q; Yang J; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Gong Q; Misawa H
    Opt Express; 2017 Mar; 25(6):6883-6894. PubMed ID: 28381030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.
    Khunsin W; Dorfmüller J; Esslinger M; Vogelgesang R; Rockstuhl C; Etrich C; Kern K
    ACS Nano; 2016 Feb; 10(2):2214-24. PubMed ID: 26789080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy.
    Sun Q; Yu H; Ueno K; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Mar; 10(3):3835-42. PubMed ID: 26878248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast photoemission electron microscopy: Capability and potential in probing plasmonic nanostructures from multiple domains.
    Sun Q; Zu S; Misawa H
    J Chem Phys; 2020 Sep; 153(12):120902. PubMed ID: 33003736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H
    Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic and plasmonic surface field distributions characterized with normal- and oblique-incidence multi-photon PEEM.
    Word RC; Könenkamp R
    Ultramicroscopy; 2017 Dec; 183():43-48. PubMed ID: 28551034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near field of strongly coupled plasmons: uncovering dark modes.
    Schertz F; Schmelzeisen M; Mohammadi R; Kreiter M; Elmers HJ; Schönhense G
    Nano Lett; 2012 Apr; 12(4):1885-90. PubMed ID: 22429148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic wavelength-dependent optical switch.
    Kilbane D; Prinz E; Eul T; Hartelt M; Mahro AK; Hensen M; Pfeiffer W; Aeschlimann M
    Opt Express; 2023 Mar; 31(6):9579-9590. PubMed ID: 37157525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
    Simoncelli S; Li Y; Cortés E; Maier SA
    Nano Lett; 2018 Jun; 18(6):3400-3406. PubMed ID: 29715431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes.
    Yan C; Martin OJ
    ACS Nano; 2014 Nov; 8(11):11860-8. PubMed ID: 25386975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Chiroptical Response of Plasmonic Nanostructures at the Nanofemto Scale.
    Zu S; Sun Q; Cao E; Oshikiri T; Misawa H
    Nano Lett; 2021 Jun; 21(11):4780-4786. PubMed ID: 34048263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption Spectroscopy of an Individual Fano Cluster.
    Yorulmaz M; Hoggard A; Zhao H; Wen F; Chang WS; Halas NJ; Nordlander P; Link S
    Nano Lett; 2016 Oct; 16(10):6497-6503. PubMed ID: 27669356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between near-field and far-field properties of plasmonic Fano resonances.
    Gallinet B; Martin OJ
    Opt Express; 2011 Oct; 19(22):22167-75. PubMed ID: 22109059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.