These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27775573)

  • 21. Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals.
    Ngeo J; Tamei T; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2756-9. PubMed ID: 23366496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of the flexion-extension motion in the elbow joint some problems concerning muscle forces modelling and computation.
    Raikova R
    J Biomech; 1996 Jun; 29(6):763-72. PubMed ID: 9147973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of joint angle based on surface electromyogram signals recorded at different load levels.
    Azab AM; Arvanch M; Mihaylova LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2538-2541. PubMed ID: 29060416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel HD-sEMG Preprocessing Method Integrating Muscle Activation Heterogeneity Analysis and Kurtosis-Guided Filtering for High-Accuracy Joint Force Estimation.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1920-1930. PubMed ID: 31398123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of biceps brachii and brachioradialis for the control of elbow flexion and extension movements.
    von Werder SC; Disselhorst-Klug C
    J Electromyogr Kinesiol; 2016 Jun; 28():67-75. PubMed ID: 27061680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of the Muscle Brachioradialis in Elbow Flexion: An Electromyographic Study.
    Caufriez B; Dugailly PM; Brassinne E; Schuind F
    J Hand Surg Asian Pac Vol; 2018 Mar; 23(1):102-110. PubMed ID: 29409427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Load Variation on Joint Angle Estimation From Surface EMG Signals.
    Tang Z; Yu H; Cang S
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1342-1350. PubMed ID: 26600163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface electromyogram signals classification based on bispectrum.
    Orosco E; Lopez N; Soria C; di Sciascio F
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4610-3. PubMed ID: 21096229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cervical flexion: a study of dynamic surface electromyography and range of motion.
    Cram JR; Kneebone WJ
    J Manipulative Physiol Ther; 1999; 22(9):570-5. PubMed ID: 10626699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the hand motion recognition system based on surface EMG using suitable measurement channels for pattern recognition.
    Nagata K; Ando K; Magatani K; Yamada M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5214-7. PubMed ID: 18003183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Braking of elbow extension in fast overarm throws made by skilled and unskilled subjects.
    Hore J; Debicki DB; Watts S
    Exp Brain Res; 2005 Jul; 164(3):365-75. PubMed ID: 15883810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscular resistance to varus and valgus loads at the elbow.
    Buchanan TS; Delp SL; Solbeck JA
    J Biomech Eng; 1998 Oct; 120(5):634-9. PubMed ID: 10412442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.
    Taneja K; He X; He Q; Zhao X; Lin YA; Loh KJ; Chen JS
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35972808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.