These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27775831)

  • 1. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.
    Mugunthan P; Russell KT; Gong B; Riley MJ; Chin A; McDonald BG; Eastcott LJ
    Ground Water; 2017 May; 55(3):302-315. PubMed ID: 27775831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites.
    Locatelli L; Binning PJ; Sanchez-Vila X; Søndergaard GL; Rosenberg L; Bjerg PL
    J Contam Hydrol; 2019 Feb; 221():35-49. PubMed ID: 30638639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating contaminant transport in unsaturated and saturated groundwater zones.
    Sarma R; Singh SK
    Water Environ Res; 2021 Sep; 93(9):1496-1509. PubMed ID: 33714215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA; Burgess WG; Barker JA; Jefferies NL
    J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation.
    Zuurbier KG; Hartog N; Valstar J; Post VE; van Breukelen BM
    J Contam Hydrol; 2013 Apr; 147():1-13. PubMed ID: 23435174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey.
    Sengör SS; Unlü K
    J Contam Hydrol; 2013 Jul; 150():77-92. PubMed ID: 23680827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TREX: spatially distributed model to assess watershed contaminant transport and fate.
    Velleux ML; England JF; Julien PY
    Sci Total Environ; 2008 Oct; 404(1):113-28. PubMed ID: 18649925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants.
    Chiovarou ED; Siewicki TC
    Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tidal boundary conditions in SEAWAT.
    Mulligan AE; Langevin C; Post VE
    Ground Water; 2011; 49(6):866-79. PubMed ID: 21275984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of an abiotic hyporheic mixing-dependent reaction: Chemical evolution of mixing and reactant production zones.
    Santizo KY; Widdowson MA; Hester ET
    J Contam Hydrol; 2022 Dec; 251():104066. PubMed ID: 36054959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of Solute Transport in the Vadose Zone into the "HYDRUS Package for MODFLOW".
    Beegum S; Šimůnek J; Szymkiewicz A; Sudheer KP; Nambi IM
    Ground Water; 2019 May; 57(3):392-408. PubMed ID: 30062703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new potential for understanding groundwater contaminant transport.
    Hadley PW; Newell C
    Ground Water; 2014; 52(2):174-86. PubMed ID: 24224536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large-scale model for simulating the fate & transport of organic contaminants in river basins.
    Lindim C; van Gils J; Cousins IT
    Chemosphere; 2016 Feb; 144():803-10. PubMed ID: 26414740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the fate and transport of TCE from groundwater to indoor air.
    Yu S; Unger AJ; Parker B
    J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.